After the Tutorial: Where to Continue your
Graphics Programming Journey

Mike Shah
Yale University

9 Graphics

. Programming
Conference

Attribution/License

Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

This slideset and associated source code may not be distributed
without prior written notice

e This slideset may not be mined using AI or algorithms and
otherwise generating derivative products without permission.

Please do not redistribute slides/source without
prior written permission.

™ Graphics Programming Conference, November 18-20, Breda

http://www.mshah.io

Web:
3 YouTube

Social:

Courses:

Talks:

, fragmentShaderSourceFilen v\g_g";)

vertexShaderSourceFilenan
) freslys

onpilation
t, GL COMPILE STATUS, &resultt)s

mshah.jio 9 Graphics)
www.youtube.com/c/MikeShah - grogfl’ammmg a o 2 5
mikeshah.bsky.social e B SR

courses.mshah.io 60 minutes | Audience: Beginner

http://tinyurl.com/mike-talks 13:30pm - 14:30pm Thur, Nov. 20, 2025

https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

Talk Abstract: There exist many great courses, tutorials, and books that describe the
fundamentals of graphics programming with various graphics APIs like OpenGL, DirectX,
Vulkan, etc. However, the next chapter often missing from tutorials, is how to start building
a rendering pipeline that puts these features into a unified framework. In this talk, I will
discuss 'the next chapter' of the graphics programming tutorial that describes how to build a
rendering framework: automatically parsing uniforms, handling materials, uniting the
compute and graphics shaders, navigating the scene tree, and bringing order to a graphics
pipeline that has multiple passes over a series of frames. This talk is targeted towards folks
who are newer to graphics programming with an API, but who otherwise have dabbled
enough to have implemented the phong illumination model. After leaving this talk, audience
members will have a path forward toward implementing a graphics framework, and
otherwise understanding graphics architecture talks with big pipelines.

e Duration: 60 minutes

™ Graphics Programming Conference, November 18-20, Breda

Your Tour Guide(s) for Today

Mike Shah

e Current Role: Teaching Faculty at Yale University

o Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

« Available for:
o Contract work in Gaming/Graphics Domains
= e.g.tool building, plugins, code review
o Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
e Fun:

o Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

™ Graphics Programming Conference, November 18-20, Breda

Web
www.mshah.io

© YouTube

https://www.voutube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks {

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Find my programming content on YouTube

First Look at:

C3 - First Impression [Programming Languages
Episode 31]

6.8K views - Streamed 1 yea

Popular videos

4o

C and C++ = with Mik
Understand -

Compilation

In 54 Minutes, Understand
the whole C and C++...

i C++ Video Series
Introduction | Modern Cpp...

years ago

The C++ Programming Language

N
with Mike \

SR o O

MODERN-FAST-EX] = 223 videos
The C++ Programming Modern C++ (cpp)
Language Concurrency

P Public - Playfist
View full playlist View full playlist

Serialize and Deserialize a struct in C++ - Stream-

C++ I/O First Look at:

Serialization of
Objects (Save/Load binary)

Modern C + +
with Mike

Cpp2 - First Imp [Prog gl

Delegated
What::are

Based I/0 part 8 of n- Modern Cpp Series Ep. 198 Episode 27]

- 10 months agc A.3K views + 1y

AC++ |

] with Mike E |
MAC 4

¢ [Setup Video] Setting up C++
on Mac (Shown on Apple M...

¢ Leam the lidb debugger
basics in 11 minutes | 2021...

¢ [Ep. 1] What is the Simple
Directmedia Layer (SDL) an...

3K views « 3 years ago 48K views + 3 years ag ASK views + 3 years agc

; il PYBIND11
Design and

Design
|Patterns

i |
s Setup with
Linux

C++ and Pybind11
lic « Playlist

/]
= 24 videos

C++ Software Design and wxWidgets Graphical User
Design Patterns Interface (GUI) Programmin...
P aylist Public - Playlist View full playfist

View ful playlist View full playlist

i D (and review on functior

lambda) [Dlang Episode 135]

+ 4 days ago

concurrency | Introduction t...

ago

C4+ Quick Start
iostream & vector

Part 1

C++ Quick Start
Public - Playlist

View full playlist

Modern C++B
Eoncurrenc - :¢ 5

The what and the why of

Web
www.mshah.io

© YouTube

https://www.voutube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

https://www.youtube.com/c/mikeshah
http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Find my programming content on YouTube

Shorts

8 OpenGL [Episode 35] Starting Application and Mesh Abstraction Refactor

Mike Shah - 1.5K views - 1 year ago

[Episode 1]
Introduction

Introduction to 8 OpenGL [Episode 36] Mesh Abstraction Refactor Continued -- two quads

OpenGL

Mike Shah - Course

Mike Shah - 1.2K views - 1 year ago

Sl = 8 OpenGL [Episode 37] Refactoring MeshUpdate and Finding Uniforms
40 videos Last updated on Jul 27, 2024

Mike Shah - 789 views - 1 year ago
/
/

Search my Web
www.mshah.io

YO u Tu b e fo r g Mike Shah - 823 views - 1 year ago :
B @ YouTube
resources on S https://www.youtube.com/c/MikeShah
: = o (;i:;]hea: [Ifzf::(/-:3:)]y::i::g MeshTranslate, MeshRotate, and MeshScale N on 'Academ iC Cou rses
Graphics

courses.mshah.io
Programming

Conference Talks

I \\ (\,\\\\\\\\\\\\\\\\\\\\\\\ AN A

8 OpenGL Episode 38 Refactoring MeshDraw and our Camera

http://tinyurl.com/mike-talks {

1g Conference, November 18-20, Breda

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks
https://www.youtube.com/c/mikeshah

= Sort m Videos Shorts

= Okay -- enough about me
-- on to the talk!

P Play

8 OpenGL Episode 38 Refactoring MeshDraw and our Camera

8 OpenGL [Episode 39] Adding MeshTranslate, MeshRotate, and MeshScale

™ Graphics Programming Conference, November 18-20, Breda

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks
https://www.youtube.com/c/mikeshah

| can’t help but be inspired when | see...

rk Ages | Official Trailer 1 (4K) | Coming 2025 https://www.voutube.com/watch?v=4tk8lkmYGWQ (Please note -- these are .gifs | captured at 12 frames per second -- see the trailer for actual footage)

https://www.youtube.com/watch?v=4tk8lkmYGWQ

Enshrouded - Official Early Access Launch Trailer

/=BSSIH5L2lil (Please note -- these are .gifs | c

d at 12 frames per second -- see the trailer for actual footage

https://www.youtube.com/watch?v=BSSIH5L2liI

Battlefield 6 Official Reveal Trailer

https://www.youtube.com/watch?v=pgNCgJG0vnY

Incredible work! (1/2)

https://www.graphicsprogrammingconference.nl/

You get the idea that these are incredibly
impressive works of engineering and art
I'm yet the humble academic (and
occasional contract graphics programmer)
these days -- incredibly impressed by the
work done at this conference and beyond!

https://www.graphicsprogrammingconference.nl/

e And -- if you worked on those games, I
apologize in advance -- you probably will
unlikely learn too many graphics
programming techniques from this session.
That said -- you may be able to contribute

valuable knowledge (in the audience, or
comments in the future) to someone who is
beginning their graphics programming
journey

o That is what this talk is about, and to hopefully
help at least one person on their journey

-, Graphics Programming Conference, November 18-20, Breda

S0 where does the journey begin for a
graphics programmer?

el

15

https://www.newzealand.com/assets/Tourism-NZ/Hamilton-Waikato/img-1536068317-157-18524-p-836AD8D5-C0D6-A3AA-232CCF3DB3EF1DC0-2544003__aWxvdmVrZWxseQo_FocalPointCropWzM1MiwxMDI0LDQzLDQ2LDc1LCJqcGciLDY1LDIuNV0.jpg

Your #1
OpenGl

° ° &
Welcome to OpenGL
Welcome to the online book for learning OpenGL! Whether you are trying to learn OpenGL for academic
purposes, to pursue a career or simply looking for a hobby, this book will teach you the basics, the
el intermediate, and all the advanced knowledge using modern (core-profile) OpenGL. The aim of LearnOpenGL
to show you all there is to modern OpenGL in an easy-to-understand fashion with clear examples, while also
providing a useful reference for later studies
So why read these chapters?

Throughout the internet there are thousands of documents, books, and resources on learning OpenGL,
however, most of these resources are only focused on OpenGL's immediate mode (commonly referred to as t
old OpenGL), are incomplete, lack proper documentation, or are not suited for your learning preferences.
Therefore, my aim is to provide a platform that is both complete and easy to understand.

. g If you enjoy reading content that provides step-by-step
instructions, clear examples, and that won't throw you in the
’ , Guest A deep with millions of details, this book is probably for you.
e The chapters aim to be understandable for people without

any graphics programming experience, but are still
Translations interesting to read for the more experienced users. We also

Or someone trying to transition into this G g Tt e i euts,

previous sounds like someone that could be you, then by all

industry -- how do you get started? - o oo

TutO]_’ia]_ « General structure

e Well -- there are a good number of written

. . General structure
trodusction sample code. In this chapter we're starting from scratch with the following code:

view

°© &8 S
OpenGL: https://learnopengl.com/

Vulkan: https://vulkan-tutorial.com/
Metal: https://developer.apple.com/metal/

< Bispa resnosibssile Direct3D 12 programming guide

D 3D . et 12 Proamming Guide 0z
. Whatis Direct3D 127
What's newin Direct3D 12 Direct3D 12 provides an APl and platform that allows apps to take advantage of the graphics and computing
capabilities of PCs equipped with one or more Direct3D 12-compatible GPUs.

o O O O

> Understanding Direct3D 12

https://learn.microsoft.com/en-us/windows/wi

» Resouce Sinding i Direct3D 12 In this section

> Memory Management in Direct3D 12

n32/direct3di12/directx-12-programming-guide s i

Topic Description

Multi-engine synchronization
Whatis Direct2D 127 DirectX 12 intraduces the next vrsion of Direct3D, the 3D graphics APl at the heart of DirectX. This

» Renderin
2 s version. Direct3D 12 enables richer

version of Direct3D s faster and more efficient than any previol

3/Comnters; Gueties and Performance Messwrernert s, more abjects, more complex effects, and ful uiization of modern GPU hardware.

> Working ith Direct3D 11, Direct3D 10 and Direct2D

Describes ignificant. ble with the latest SOK
Working Samples

> DIDI2 Code Walk-Throughs

To write 3D games and apps for Windows 10 and Windows 10 Mobile, you must understand the
the DirectaD 12 technology, and how to prepare to use it in your games and apps.

> Debuaaing and diaanostics

™ Graphics Programming Conference, November 18-20, Breda

Work submission in o improve the CPU efficiency of Direct3D apps, Direct3D 12 no longer supports an immediate context

https://learnopengl.com/
https://vulkan-tutorial.com/
https://developer.apple.com/metal/
https://learn.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide
https://learn.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide

I’ve primarily lived in OpenGL both
academically and professionally

I *still* believe Modern OpenGL (4+) is
a good place to start your graphics

journey.

I have heard this advice echo’d at
SIGGRAPH community as well for someone
self-teaching or a university student

@)

Introduction

Lighting

In Practice
Guest Articles
Code repository
Translations

Privacy

About

I'll otherwise have some
recommendations on how to move to
the modern graphics APIs later on

For folks wanting to work on games
presented at GPC -- I suspect however
you will need Vulkan, D3D12, Metal,
etc.

™ Graphics Programming Conference, November 18-20, Breda

Your #
roR OPEN

Getting started ~ »

Model Loading >
Advanced OpenGL »

Advanced Lighting »

v

>

GL

1 RESOURCE

Welcome to OpenGL

Welcome to the online book for learning OpenGL! Whether you are trying to learn OpenGL for academic
purposes, to pursue a career or simply looking for a hobby, this book will teach you the basics, the
intermediate, and all the advanced knowledge using modern (core-profile) OpenGL. The aim of LearnOpenGL
to show you all there is to modern OpenGL in an easy-to-understand fashion with clear examples, while also
providing a useful reference for later studies.

So why read these chapters?

Throughout the internet there are thousands of documents, books, and resources on learning OpenGL,
however, most of these resources are only focused on OpenGL's immediate mode (commonly referred to as t
old OpenGL), are incomplete, lack proper documentation, or are not suited for your learning preferences,
Therefore, my aim is to provide a platform that is both complete and easy to understand.

If you enjoy reading content that provides step-by-step
instructions, clear examples, and that won't throw you in the
deep with millions of details, this book is probably for you
The chapters aim to be understandable for people without
any graphics programming experience, but are still
interesting to read for the more experienced users. We also
discuss practical concepts that, with some added creativity,
could turn your ideas into real 3D applications. If all of the

Introduction

OpenGL Graphics Tutorials (1/8) B

Creating a window

Hello Window

e So what can you learn from a Graphics (e.g. OpenGL) o il
. Shaders
tutorial? —
o And when I mention OpenGL I mean ‘Modern OpenGL’ (Version 3.3 Transformations
or later) Coordinate Systems

Camera
Review
Lighting
Model Loading >
Advanced OpenGL »

Advanced Lighting »
PBR

v

In Practice

Guest Articles >
Code repository
Translations

Privacy

™ Graphics Programming Conference, November 18-20, Breda

About

Introduction

Getting started ¥

Creating a window

Hello Window

e The essentials you’ll learn are: Hello Triangle
o Learn how a graphics API has a bunch of function calls that S

communicate with the GPU

m Note: Your graphics card vendor (or perhaps open source T Syitoms

project), implements the ‘driver’ to communicate between the Camera
CPU and GPU Review

Lighting

Textures

Transformations

The OpenGL specification specifies exactly what the
result/output of each function should be and how it should
perform. It is then up to the developers implementing this
specification to come up with a solution of how this function
should operate. Since the OpenGL specification does not give us
implementation details, the actual developed versions of
OpenGL are allowed to have different implementations, as long
as their results comply with the specification (and are thus the Guest Articles
same to the user).

Model Loading >

Advanced OpenGL »

Advanced Lighting »
p(;l ' = PBR

In Practice

v

Code repository

Translations
https://learnopenal.com/Getting-started/OpenGL

Privacy

s, Graphics Programming Conference, November 18-20, Breda

About

https://learnopengl.com/Getting-started/OpenGL

Introduction

Getting started ¥

OpenGL
Creating a window

Hello Window

o Eventually you’ll render a triangle =

Textures

Transformations

T LeamOpenGL Coordinate Systems
Camera
Review
Lighting
Model Loading >
Advanced OpenGL »
Advanced Lighting »
R

-
o

In Practice
Guest Articles
Code repository

Translations

https://learnopengl.com/Getting-started/Hello-Triangle

Privacy
= Graphics Programming Conference, November 18-20, Breda p—

https://learnopengl.com/Getting-started/Hello-Triangle

Introduction

Getting started ¥

OpenGL
Creating a window
Hello Window

Hello Triangle

Shaders

o You’ll learn some 3D Math
m And you will gain some linear algebra intuition about
tranSformationS Coordinate Systems

Textures

Camera
Review
Lighting
Model Loading >
Advanced OpenGL »

Advanced Lighting »

v

PBR

In Practice
Guest Articles >
Code repository

Translations
https:/learnopengl.com/Getting-started/Transformations (I actually wrote gerno myser, o

) Graphics Programming Conference, November 18-20, Breda

Privacy

About

https://learnopengl.com/Getting-started/Transformations

Introduction

Getting started ¥

OpenGL

Creating a window

Hello Window

e The essentials you’ll learn are: Hello Triangle

o Then yowll understand a bit about shaders il
m Sampling texture data to add more detail

Transformations

Coordinate Systems

Camera
Review
Lighting
Model Loading >
Advanced OpenGL »

Advanced Lighting »

v

PBR

In Practice
Guest Articles >
Code repository

https://learnopenal.com/Getting-started/Textures Translations

) Graphics Programming Conference, November 18-20, Breda

Privacy

About

https://learnopengl.com/Getting-started/Textures

Introduction
Getting started >

Lighting

Colors

e The essentials you’ll learn are:
o You’ll then apply some of that same math you learned for
transformations and apply it for diffuse lighting or perhaps
the phong illumination model

Materials
Lighting maps
Light casters
Multiple lights
el Review

Model Loading >
Advanced OpenGL »

Advanced Lighting »

PBR

v

In Practice
Guest Articles >
Code repository

Translations

https://learnopenal.com/Lighting/Basic-Lighting

™ Graphics Programming Conference, November 18-20, Breda et
About

https://learnopengl.com/Lighting/Basic-Lighting

Introduction

Getting started >

e The essentials you’ll learn are:
o Youw’ll then learn that ‘textures as data’ is a good trick to help

you compute per-pixel lighting tricks like normal mapping

Lighting v

Colors

Basic Lighting

Materials

Lighting maps

Light casters

Multiple lights

Review

Model Loading >

Advanced OpenGL »

https://learnopenal.com/Advanced-Lighting/Normal-Mappin:

) Graphics Programming Conference, November 18-20, Breda

Advanced Lighting ¥

Advanced Lighting

Gamma Correction

Shadows

>

Parallax Mapping

HDR

Bloom

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Introduction
Getting started >

Lighting

Colors

i ‘ Basic Lighti
e If most of this progression made sense to L

you -- you’re in the right place
o You’ve probably done your homework and
otherwise done a bit of graphics programming
o And if most of the topics I showed make sense to
you -- great!
= So what next?

Materials
Lighting maps

Light casters

Multiple lights
Review
Model Loading >
Advanced OpenGL »
Advanced Lighting ¥
Advanced Lighting
Gamma Correction

SIEL (S

Parallax Mapping

I
v
Pl
|
v

) Graphics Programming Conference, November 18-20, Breda -
oom

The premise of this talk

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

A e ok

I © . L,

- -

oy o)
4+

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

In fact, a whole
pipeline of interesting
graphics effects

ame

Early Fr
UI Stencil

Directional
Character

Spot Lights
Omnidirectional

LUT
Generation

Terrain
Height
Grass Foroes

Grass
Visibility

Light Bin
Depth Bounds
Screen Bins

Global
Attenuation

Compute

Fluid Sim

Opaque Lighting

Forward
Lighting

Grass Lighting

Transparent Lighting

Transparents
Blended
Additive

Ghost

Post
Bloom
Atmospherics
Tonemapping
Color Grading

Compose
HD /SD /UT

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

So how do | get o
there?

Compute
9 Compaste

Fluid Sim

arent Lighting

Early Frame
I .

Shadows Prepass E‘r’rm.ard Reflections) ;?:ntu
Directional - I n
Charttt': 9 9 Atmospherics

U Clutter =
UI Stencil Opaque Lighting

Tonemapping C
Spot Lights Grass : : Transparents ompose
Omnidiractional Visibility Grass Lighting y Sended Cﬁxfﬁ"‘:‘? HD / SD / UT

Ghost
LUT Light Bin
Generation Depth Bounds
Screen Bins

Terrain
Height Global
Grass Foroes Attenuation

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Graphics Pipelines* (1/2)

e The premise of this talk is what do I
learn next in graphics as a
beginner?

e I watched ~3.5 years ago a talk by
Kevin Todisco who helped build the

Diablo IT Resurrected renderer shown
o And what I realized while watching, (even
after having worked as a graphics
programmer)

m Ireally did not have (or think about)
my graphlcs plpehne with respect to https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
all the stages that create the final (Slides)
scene -- and I’'m not sure when I Note: The reason | picked this as an example
. eqye . 1.) It was a nice talk
vaU1red the a]:?lhty to also think 2) Kevin Todisco was very nice to me after the talk answering a
about render plpehnes graphics question (we had never met before).

= Something was missing in the
middle of my learning

™ Graphics Programming Conference, November 18-20, Breda

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Graphics Pipelines* (2/2)

e I understood the graphics pipeline
-- but I did not understand
graphics pipelines and how to
compose a larger and functional

graphics framework
o Let me explain

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)
Note: The reason | picked this as an example
1.) It was a nice talk
2) Kevin Todisco was very nice to me after the talk answering a
graphics question (we had never met before).

™ Graphics Programming Conference, November 18-20, Breda

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Introduction

Getting started >

My Problem (1/5)

Lighting

Colors

e For years I understood well how to follow graphics =i

tutorials -- and recreate the desired effects well TR

enough tO: Light casters
o Recreate an effect Multiple lights
o Experiment a little bit Review
m (i.e. not copy & paste, but type out every line of code, Model Loading ~ »
lookup functions I do not understand, try to draw the math, |FYIEEEEEo TN

Materials

etc.) Advanced Lighting ¥
Advanced Lighting
Gamma Correction

Shadows

Parallax Mapping

™ Graphics Programming Conference, November 18-20, Breda -
oom

)

=
=
<4
v

Introduction

Getting started >

My Problem (2/5)

Lighting

Colors

e (Aside) Something I found helpful too was to translate into different basic Lighting

languages (e.g. D programming language) Materials
o C++remains king in the graphics domain, but use whatever you S HAGEpS
want learn. Light casters

Multiple lights
Review
Model Loading >
Advanced OpenGL »
Advanced Lighting ¥
o C++to D translation guide for today Advanced Lighting
m unordered_map<key,value> map; Gamma Correction
e value[key] map;
m std:println
e writeln

Shadows

Parallax Mapping

=
)
Pl
|
v

-, Graphics Programming Conference, November 18-20, Breda

Bloom

The Problem: How do | go from
writing a bunch of code in a single
source file to these neat little boxes
that make graphics ‘pipelines’

int main()

gliwInit();

glfwwWindowHint (GLFW_CONTEXT_VERSION MAJOR, 3);
glfwWindowHint (GLFW_CONTEXT VERSION MINOR, 3);
glfwwWindowHint (GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

glfwhindowHint (GLFW_OPENGL_FORWARD COMPAT, GL TRUE);

GLFWwindow* window = glfwCreateWindow(SCR WIDTH, SCR HEIGHT, , NULL, NULL);
if (window = NULL)

std: :cout << << std:
glfwTerminate();
return -1;

}
glfuMakeContextCurrent (window) ;
glfwSetFramebufferSizeCallback(window, framebuffer size callback);

if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) Hair Mipe Terrain
{) Compasite

t << <<

re(u;u -1; b ’ Skin
Early Frame
ent Lighting
ut Clutter "
Py = Opaque Lightng [N
unsigned int vertexShader = glCreateShader(GL_VERTEX_ SHADER); Shadows m Forward

glshaderSource(vertexshader, 1, &vertexShaderSource, NULL);

. Lighting
glCompileShader (vertexShader) ; .

Grass
Visibility Grass Lighting

int success;

char infolog[512]; [
glGetshaderiv(vertexshader, GL_COMPILE STATUS, &success); Generation
if (!success)

Sreen s
Terrain
glGetShaderInfoLog(vertexshader, 512, NULL, infolog); Height ol
Eise << infolog << std::endl; ttenuation
1

unsigned int fragmentShader = glCreateShader(GL_FRAGMENT SHADER);
glshaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
qlCompileshader (fragmentShader) ;

Light Bin SSAO

glGetShaderiv(fragmentShader, GL_COMPILE STATUS, &success);
if (!success)

gleetshaderInfoLog(fragmentShader, 512, NULL, infoLog);
td: :cout <<

<< infolog << st

}

unsigned int shaderProgram = glCreateProgram();

Hello Triangle

) Graphics Programming Conference, November 18-20, Breda 35 02 5

Important (opinionated) Teaching Note:

e | *encourage* the approach that
does not present some
heavy abstraction / framework
o At least for the foundations, too much
; e abstraction just means I'm learning
someone else's abstraction instead of
the one single thing I'm trying to learn
e and developing my mental model
e This tutorial does its job of teaching
OpenGL quite well
{ATT L << infolog << std::endl; < and
S also
are great for this purpose
o Note: Some of the learnopengl guest
articles and game series otherwise

show how to put more things together!
- —oy

W_OPENGL_CORE_PROFILE);

Hello Triangle

-, Graphics Programming Conference, Novem|

http://learnopengl.com
https://antongerdelan.net/opengl/
http://www.opengl-redbook.com/

e So -- after these tutorials end --
what happens next?
e How do | do the abstraction (the

; 1 J
Hint (GLFW_CONTEXT VERSION MAJOR, 3);

Hint (GLFW_CONTEXT_VERSION MINOR,
owHint (GLFW_OPENGL_PROFILE, GLFW OPENLL CORE_PROFILE);

glfwWindowHint (GLFW_OPENGL_FORWARD_ COMPAT,

o There’s a lot of ‘intro level’ and
T, S0 ‘expert level stuff out there which

gl Terrmateu
return

e e is great, but we need more in the

framebuffer size callback);

middle (some which is at this
| . conference!)

return -1;

nt vertexShader = glCreateShader(GL_VERTEX_SHADER) ;
Source(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader) ;
success;

1;
rtexShader, GL_COMPILE STATUS, &success);

T R Note: When | teach graphics in a semester

ed int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER) ;
ShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL)

;uwmleshaderf fragnentShader) ;)) ' ’ CO u rse = We *u S U al Iy* d O bu I |d U p a

glGetShaderiv(fragmentShader, 6L COMPILE STATUS, &success);
if (!success)

st ot oy reusable framework from scratch -- but |
think there’s a gap in literature here.

Hello Triangle

-, Graphics Programming Conference, Novem| : \

Building a Rendering Framework

General Architecture

e So let’s figure out some projects, techniques, and things to try to
get us ‘beyond’ the tutorial content we usually find.

e My goal here: is to help you setup your own ‘playground’ or
boilerplate so you can experiment in graphics and see how these
pieces fit together.

™ Graphics Programming Conference, November 18-20, Breda

Two Main Ideas in Modern OpenGL Programming (1/2)

e From a Modern OpenGL Perspective
-- there’s really two big ideas to

understand

o BigIdea #1 Buffers of data that get
uploaded to the GPU from the CPU

o Big Idea #2 Shaders are programs that
execute on the GPU

e Soin my mind, we need to learn
how to manage or provide the right

level of abstraction
o (Then we can just write the interesting or
creative code that is more fun)

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

(Slides)

™ Graphics Programming Conference, November 18-20, Breda

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

e (Aside)
o Big Idea #3 For even more modern APIs
involve ‘command buffer’ or ‘Render
Passes’ that encapsulate all state

e Note:

o Studying an API like Vulkan, will
probably really help how you structure
code at least for the ‘command buffer’
abstraction in older API’s

o In fact, some of the ‘abstraction’ today
we’ll study with uniforms informs
uniform abstractions in Vulkan

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

(Slides)

™ Graphics Programming Conference, November 18-20, Breda

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Big ldea #1 and #2

Abstracting our shaders and buffers

42

‘Pipeline’ abstraction (1/3)

/// A pipeline consists of all of the shader programs (e.g. vertex shader and fragment shader) to create an OpenGL
/// program object. The OpenGL program object represents the 'graphics pipeline' that we select prior to a glDraw* call

. One Of the f]-rSt thlngs tO das?/siﬁ:})ig?{au of the pipelines that have been loaded

static GLuint[string] sPipeline;

find the right level of 17 tane ot currnt pietin

st rlng mPlpellneName,
// Name in OpenGL of the current pipeline

3 f 3 GLint mProgramObjectID;
a Stractlon Or IS /// Map of Uniform locations
GLint[string] mUniformCachedLocations;
‘Shaders’ /// Constructor to build a graphics pipeline with a vertex shader and fragment shader source file
/// Note: The pipeline path should be specified with a '/' at the end.
/17 All shaders must otherwise be named 'vert.glsl' and 'frag.glsl' otherwise.
/17 : Support for 'geo.glsl', 'tess.glsl', 'compute.glsl' and 'mesh.glsl' will have to come in the future.

Shaders g Ouped /17 : Future 'pipelinePath' should likely just be a .json file with the paths otherwise specified
/1/ to make it even easier to setup configurations.

(string pipelineName, string pipelinePath){

(pipelinePath[$-1] == 7 Vs

together (Or CO I posed) string vertexShaderSourceFilename = pipelinePath ~ ;

string fragmentShaderSourceFilename = pipelinePath ~

¢ ° ° 9 CompilePipeline(pipelineName, vertexShaderSourceFilename, fragmentShaderSourceFllename)

ma]-{e plpellnes /// Store locations of uniforms after successful compilation.

ParseUniforms (vertexShaderSourceFilename);

writeln(,vertexShaderSourceFilename);

ParseUniforms (fragmentShaderSourceFilename) ;

@) EVGH in the naming Of the writeln(: , fragmentShaderSourceFilename);

writeln(mUniformCachedLocations);

datatype to a ‘pipeline’ I
found useful for my
understanding.

<' Graphics Programming Conference, November 18-20, Breda 43 2025

‘Pipeline’ abstraction (2/3)

. I Ve hlghllghted the 1<ey das?ﬁﬁlﬁ:élgi{au of the pipelines that have been loaded
static GLuint[string] sPipeline;
parts of my abstraction
o An ‘id’ (program ID)
O A name for the plpellne /// Constructor to build a graphics e X r an
ote: The pipeline path should be c : e
u (Human_readable Way : Wl ['F, i) t ' | 2 glal A 1 l ha the future.
to refer to a pipeline) ‘ ations. e ‘
o The shader objects:
m Vvertex shader e e ————
Pa rseUniforms (vertexShaderSourceFilename) ;)
u fragment Shader ggggb:iforms(fragmentShaderSourceFilename); rvertexshadersourcefilenane)

writeln(, fragmentShaderSourceFilename) ;
writeln(mUniformCachedLocations);

(string pipelineName,
pipelipnePath[$

ing fragmentShaderSourceFilename
ompilePipeline(pipelineName, verte

<' Graphics Programming Conference, November 18-20, Breda

‘Pipeline’ abstraction (3/3)

A pipel
prog

, L] // " . € Upc IO L i c & tne
. There S a-]-so Somethlng das?ﬁﬁlﬁ:élgi{au of the pipelines that e been loaded

static GLuint[string] sPipeline;
L]
else potentially
ng mPipelineName;
. o // Name in OpwnGL of Thr: current pipeline
interesting here

o Uniforms
m (And in particular,
perhaps CaChing their ki (strlng plpell;\eName, strlng pipelﬁgP;:F\ﬁm”anmr’.

(pipelinePath[$- ,
string vertexShaderSourceFilename = pipelinePath ~

3)
1ocatlons) string fragmentShaderSourceFilename = pipelinePath ~

CompilePipeline(pipelineName, vertexShaderSourceFllename, fragmentShaderSourceFllename)
/ Store locations of uniforms after s L pilation.

ParseUniforms (vertexShaderSourceFilename);

writeln(

ParseUniforms (fragmentShaderSourceFilename) ;

writeln(

writeln(mUniformCachedLocations);

fragment shader source file

future.

,vertexShaderSourceFilename);

, fragmentShaderSourceFilename) ;

<' Graphics Programming Conference, November 18-20, Breda

Building a Rendering Framework

Organizing your Uniforms

46

Uniforms (1/5)

e In shader programming we learn about how to send data from our
CPU to GPU using a ‘uniforms’ (i.e. constants in our pipeline) that

have their value sent in

o When I learn (or first teach) uniforms I write my code that looks something like
this.

GLint location = glGetUnifomeocation(gBasicGraphicsPipeline,

(location > -1){
gluniformlf(location,gYValue);

{

writeln(

<' Graphics Programming Conference, November 18-20, Breda 47 2025

Uniforms (2/5)

e Doing the prior setup, is
tedious and potentially error

Uniform{
13 +-- 21 lines: GLint mPipelineId; // What graphics pipeline the uniform is part o

rone (uniformname, data){
I;) mUniformName uniformname;
mDataType :

o So writing some ‘wrapper’ type - data;’

for a Uniform can be useful. 41 +-- 19 lines: / Add a new uniform with a specific type

Transfer(){
(mDataType==){

glUniformli(mCachedUniformLocation, ()ymPlainDataType);
(mDataType==){

glUniformlf(mCachedUniformLocation, ()ymPlainDataType);
(mDataType==){

vec2* v = (vec2*)mData;

glUniform2f(mCachedUniformLocation,v.data[0],v.data[1]);
(mDataType==)

vec3* v = (vec3*)mData;

glUniform3f(mCachedUniformLocation,v.data[0],v.data[1],v.data[2]);
(mDataType==){

matd* m = (mat4*)mData;

glUniformMatrix4fv(mCachedUniformLocation, 1, GL TRUE, m.DataPtr());
} {

(o,)

<' Graphics Programming Conference, November 18-20, Breda 48 2025

Uniforms (3/5)

e Provided to the right is an
example where I create the
uniform type initialized with i e

mDataType

data Of that type | mPlainDataType data;,

Uniform{
13 +-- 21 lines: GLint mPipelineId; // What graphics pipeline the uniform is part o

Transfer(){
(mDataType==){

glUniformli(mCachedUniformLocation,)ymPlainDataType);
(mDataType==){

glUniformlf(mCachedUniformLocation,)ymPlainDataType);
(mDataType==){

vec2* v = (vec2*)mData;

glUniform2f(mCachedUniformLocation,v.data[0],v.data[1]);
(mDataType==)

vec3* v = (vec3*)mData;

glUniform3f(mCachedUniformLocation,v.data[0],v.data[1],v.data[2]);
(mDataType==){

matd* m = (mat4*)mData;

glUniformMatrix4fv(mCachedUniformLocation, 1, GL TRUE, m.DataPtr());
} {

(o,)

<' Graphics Programming Conference, November 18-20, Breda 49 2025

Uniforms (4/5)

e When it comes time to
‘update’ my data, I can call a
simple ‘Transfer’ function ainiforlane. < uniformane:

mDataType

o (‘Transfer’ representing the ; SPlRlnlsiape data;

action of updatlng the value at 41 +-- 19 lines: / Add a new uniform with a specific type
¢ : ’ .
the ‘location’ of the uniform e gt il

(mDataType==){
from CPU tO GPU) glUniformli(mCachedUniformLocation, ()ymPlainDataType);
(mDataType==){
glUniformlf(mCachedUniformLocation, ()ymPlainDataType);
(mDataType==){
vec2* v = (vec2*)mData;
glUniform2f(mCachedUniformLocation,v.data[0],v.data[1]);
(mDataType==)
vec3* v = (vec3*)mData;
glUniform3f(mCachedUniformLocation,v.data[0],v.data[1],v.data[2]);
(mDataType==){
matd* m = (mat4*)mData;
glUniformMatrix4fv(mCachedUniformLocation, 1, GL TRUE, m.DataPtr());
} {
(o,)

Uniform{
13 +-- 21 lines: GLint mPipelineId; // What graphics pipeline the uniform is part o

<' Graphics Programming Conference, November 18-20, Breda 50 2025

Uniforms (5/5)

e Some things like the uniform
location could also be
potentially cached ainiforlane. < uniformane:

mDataType

per_pipeline. } mPlainDataType data;,

- 19 lines: / Add a new uniform with a specific type

Uniform{
- 21 lines: GLint mPipelineId; // What graphics pipeline the uniform is part o

Transfer(){
(—) {
glUniformli(mCachedUniformLocation, ()mPlainDataType)J

== A1
glUniformlf(mCachedUniformLocation, ()ymPlainDataType);
(mDataType==){
vec2* v = (vec2*)mData;
glUniform2f(mCachedUniformLocation,v.data[0],v.data[1]);
(mDataType==)
vec3* v = (vec3*)mData;
glUniform3f(mCachedUniformLocation,v.data[0],v.data[1],v.data[2]);
(mDataType==){
mat4* m = (mat4*)mData;
glUniformMatrix4fv(mCachedUniformLocation, 1, GL TRUE, m.DataPtr());
} {
(o,)

<' Graphics Programming Conference, November 18-20, Breda 51 2025

Caching Uniforms

e (Top code snippet)

o Here’s a quick example of
my ‘caching’ of a uniform
location

e (Bottom code snippet)

o Probably more interesting
is the types of error
reporting that are enabled
by having this type of
abstraction

m (Seeurlin comment
for more)

GLint CheckAndCacheUniform(

pipelineName, uniformName) {

mCachedUniformLocation = glGetUniformLocation(mPipelineId,uniformName.toStringz);

(mCachedUniformLocation == -1){
writeln()i
writeln(~uniformName~)z
GLint program;
glGetIntegerv(GL CURRENT PROGRAM,&program);

writeln(,mPipelineld);
PrintShaderAttributesAndUniforms (pipelineName,mPipelineld);
(program != mPipelineld){
writeln()i
writeln(,program) ;
PrintShaderAttributesAndUniforms(
writeln(

,program) ;
)

} !
exit (EXIT FAILURE);

mCachedUniformLocation;

PrintShaderAttributesAndUniforms(str
writeln(~pipelineName~
params = -1;

pipelineName, GLuint programme) {
~programme.to! J~

glGetProgramiv(programme, GL LINK STATUS, ¶ms);
writefln(, params);

glGetProgramiv(programme, GL_ATTACHED SHADERS, ¶ms);
writefln(, params);

glGetProgramiv(programme, GL ACTIVE ATTRIBUTES, ¶ms);
writefln(
writefln(
writeflin(

,params) ;

<' Graphics Programming Conference, November 18-20, Breda 52 2025

Shader introspection

e (Aside)

o Here’s a helper function to
print out the uniforms and
attributes from our
pipelines
This can be helpful for

debugging
e It’s generally useful for
debugging -- though
tools like renderdoc are
also quite handy here.

Vendor: NVIDIA Corporation
Renderer: NVIDIA TITAN Xp/PCIe/SSE2
Version: 4.1.0 NVIDIA 565.77

Shading language: 4.10 NVIDIA via Cg compiler

(shader debug info)
GL LINK STATUS =1
GL_ATTACHED SHADERS = 0
GL_ACTIVE ATTRIBUTES= 2

location

aPosition
aTexCoords

GL_ACTIVE_UNIFORMS =

sampler2D albedomap
sampler2D normalmap
mat4 uModel
mat4 uProjection

PrintShaderAttributesAndUniforms (st pipelineName, GLuint programme) {
writeln(~pipelineName~ ~programme.to!)~
params = -1;
glGetProgramiv(programme, GL LINK STATUS, ¶ms);
writefln(, params);

glGetProgramiv(programme, GL_ATTACHED SHADERS, ¶ms);
writefln(, params);

glGetProgramiv(programme, GL ACTIVE ATTRIBUTES, ¶ms);
writefln(,params) ;
writefln(
writefln(

<' Graphics Programming Conference, November 18-20, Breda 53 2025

Uniform Buffer Block (UBO) Abstraction

e Note:

o This same abstraction of a
‘Uniform’ can also be
applied to things like
Uniform Buffer Blocks
(UBO)

m Useful if we have a
collection of shared
uniforms.

Please feel free to pause
later and read the
comments on the idea
here.

<' Graphics Programming Conference, November 18-20, Breda

UniformBufferBlock(T){
GLint mPipelineld;

mUniformName;

GLuint[] mUniformBufferBlockMap;

pipelineName, r uniformBlockName, GLuint index){

(uniformBlockName !in mUniformBufferBlockMap){
GLuint uboID;

glGenBuffers(1,&uboID);

mUniformBufferBlockMap[uniformBlockName] = ubolID;
glBindBuffer(GL_UNIFORM BUFFER,uboID);

size = ParseStd140Struct!T();

glBufferData(GL UNIFORM BUFFER, size, , GL_STATIC DRAW);

« 2025

Where do Uniforms get Used? (1/3)

glUseProgram(gBasicGraphicsPipeline);

e SO0 we bind our uniforms
before doing something

GLint location = glGetUniformLocation(gBasicGraphicsPipeline,

(location > -1){

with a ‘pipeline’ | Sluniform location, gratue);
o e.g.Setup our uniforms T
prior to a glDraw* call
e So with the example on glBindvertexArray (ghesh.nVA0);
the right -- we can
improve this by 2t in be i shadls 3 Yol
‘erouping’ together

related uniforms

o, Graphics Programming Conference, November 18-20, Breda

Where do Uniforms get Used? (2/3)

GLint location = glGetUniformLocation(gBasicGraphicsPipeline,

e Observe there are three
blocks to generally set

(location > -1){

things up glUniformlf(location,gYValue);
o Yelse{
o Select the pipeline T
o Setup the uniforms and
bind any state
o Perform the draw call based
on the state of OpenGL

glDrawArrays(GL TRIANGLES,O,3);

<' Graphics Programming Conference, November 18-20, Breda

Where do Uniforms get Used? (3/3)

glUseProgram(gBasicGraphicsPipeline);

GLint location = glGetUniformLocation(gBasicGraphicsPipeline,

(location > -1){
glUniformlf(location,gYValue);
} {

o Select the pipeline writeln(
o Setup the uniforms and
bind any state

glDrawArrays(GL TRIANGLES,O,3);

We can simplify this step
quite a bit!

™ Graphics Programming Conference, November 18-20, Breda 57 202 5

Materials (1/3)

e We can group together
uniforms and the
pipeline that they use in
a material.

mP1pel1lneName;
GLuint mProgramObjectID;

Uniform[ing] muniformMap;

0;:

(pipelineName) {
PipelineCheckValidName (pipelineName);

mPipelineName = pipelineName;
mProgramObjectID = Pipeline.sPipeline[pipelineName];

Adduniform(Uniform(
Adduniform(Uniform(
AddUniform(Uniform(

AddUniform(Uniform u){
u.mPipelineId = Pipeline.sPipeline[mPipelineName];
u.CheckAndCacheUniform(mPipelineName,u.mUniformName);

mUniformMap[u.mUniformName] = u;

<' Graphics Programming Conference, November 18-20, Breda 58 2025

Materials (2/3)

IMaterial{

e Organizing into AL T
Materials malkes it easier

Uniform[ing] muniformMap;

to work with uniforms
and state alongside your
graphics pipelines

o Everything is in one place
On a material basis -- we
can ‘add uniforms’ based
on some convention --
usually during

construction
o (e.g.uModel, uView,
uProjection)

<' Graphics Programming Conference, November 18-20, Breda

0;:

(s pipelineName) {

PipelineCheckValidName (pipelineName);

mPipelineName = pipelineName;
mProgramObjectID = Pipeline.sPipeline[pipelineName];

Adduniform(Uniform(
Adduniform(Uniform(
AddUniform(Uniform(

id AddUniform(Uniform u){

u.mPipelineId = Pipeline.sPipeline[mPipelineName];
u.CheckAndCacheUniform(mPipelineName,u.mUniformName);

mUniformMap[u.mUniformName] = u;

» 2025

Materials (3/3)

IMaterial{

e No onereally told me e
however -- that instead of
‘manually’ adding the
uniforms into your map --
you could actually just
parse them!

e Note:

o Learning Tip: Learning these
things/tricks often comes
from reading other folks Adduni form(new Uniforn(

Adduniform(Uniform(

source code. Adduni form(new niforn(
m Read other folks ‘hobby

englneS’ or Smaller id AddUniform(Uniform u){

Open—Source gl’aphiCS u.mPipelineId = Pipeline.sPipeline[mPipelineName];

Uniform[ing] muniformMap;

0;:

(s pipelineName) {

PipelineCheckValidName (pipelineName);

mPipelineName = pipelineName;
mProgramObjectID = Pipeline.sPipeline[pipelineName];

engines to see how folks
solved problems

<' Graphics Programming Conference, November 18-20, Breda

u.CheckAndCacheUniform(mPipelineName,u.mUniformName);

mUniformMap[u.mUniformName] = u;

» 2025

Parsing Uniforms (1/2)

eline consists of all n’r T‘we shader ader) to create an 0

. The OpenGL pr

. / a ‘ ep Cs
. SO you mlght have ‘ as?/?lﬂa})lr‘:?{ﬂl of the pipelines that have been loaded

static GLuint[string] sPipeline;

observed -- as soon as I S
create a pipeline -- I just

parse the uniforms 17 e o o R
o (We have the shader text 77 B e pprteiaty Srouta het’suethe s s i i ttenis spcifis” "
usually, or could otherwise (lpetineratnis-1) =777 choacrer o

string vertexShaderSourceFilename
string fragmentShaderSourceFilename = pipelinePath ~

do Some introspection after CompllePlpellne(plpellneName vertexshadersourcsFllename fragmentshadersourceFllename)
;
we compile the shader) : T —_.,

ParseUniforms (fragmentShaderSourceFilename) ;
writeln(, fragmentShaderSourceFilename) ;

writeln(mUniformCachedLocations);

rce file

<' Graphics Programming Conference, November 18-20, Breda

vold ParseUnitforms(string Tilename
a.

ParSing Uniforms (2/2) File f = File(filename,"r");

(!exists(filename)){
(0,"F ~filename~

// Begin p ng file looking specifically for 'uniform' qualifiers
(line ; f.byLine){

/ Map of al]
static GLuinj

line = line.strip(); // Remove whitespaces from front and end of lines.

// Proceed forward if we do not have a uniform qualifier to start the line

// Name of ct (!line.startsWith(\DRA
string mPipe] 5
/ Name in Of }

nt mProgri

fiaprof // Uniforms will also be of the style:

GLint[string // 'uniform' ' 'name’

// or

. i, Sonste] // 'uniform' 'type' 'name' '[10]' (where 10 is an array of 10 elements.
e Thus you can try is to e T /8 Note, this could aiso be a #define]

char[]1[] tokens = line.split().array;

° // ; Ful ing t = tok .dup;
automate the parSIHg Of : - S’t/rﬁggn ngj m:iﬁlnié ‘][okgﬁs and otherwise remove semi-colon at end of line,

// and any spaces that might be in the name.

uniforms . ;
e The point of thisis to PR .coarerrtN b ikt W i

‘free’ you up from Parsenioesragmencstadersourcertienane); "L

managing your uniform

variables as you

experiment.

g

writeln(mUniformCachedLocations);

® Graphics Programming Conference, November 18-20, Breda

e
ParseUniftorms (vertexShaderSourcerilename);
- o o o

Parsing Uniforms - Introspection

/// Light structure for uniform

. struct Light{
[NOte. vec3 color;
. . . vec3 position;
o Generic programming on Uniforms (vec3 color, vec3 position){
to automatically write helper il g

functions and parse things like i
¢ ’
StruCtS can be used' /// Autotomatically Set uniform values of a struct

e Capabilities may vary based on e

programming language pragna(nsg, "Type:~T.stringof);
. . static (field; T.tupleof){
o C++26 will support more static pragma(msg, ~ (field).stringof~" "~field.stringof);
}

reflection”” that could support }

something like this natively shared static this()
o D has this capability already i

Preprocessor/external libraries may

otherwise help achieve techniques

as shown

{
);

® Graphics Programming Conference, November 18-20, Breda

Building a Rendering Framework

Handling Materials

64

Material Systems (1/2)

IMaterial{

e Iintroduced this i et
‘material’ interface which {2 e e

is our collection of
uniforms and a pipeline
The point of the material
system is to create our

0;:

(pipelineName) {

PipelineCheckValidName (pipelineName);

mPipelineName = pipelineName;

mProgramObjectID = Pipeline.sPipeline[pipelineName];

‘per-object’ (or group of
objects) specific way of Addun forn . U for

Adduniform(Uniform(
AddUniform(Uniform(

drawing something
o l.e.Simply bind a new B e

material pI'iOI' toa gl:DI'ElW”< u.mPipelineId = Pipeline.sPipeline[mPipelineName] ;

function

u.CheckAndCacheUniform(mPipelineName,u.mUniformName);

mUniformMap[u.mUniformName] = u;

<' Graphics Programming Conference, November 18-20, Breda

s 2025

Material Systems (2/2)

. . . 1ike@mike-MS-7B17: t terial
e Each file displayed is an = i & Hiree materials/
example of a different material basiclightmaterial.d
. dob d basicmaterial.d
e Note: We can do better an manager-.d
malke this data-driven (e.g. material.d |
c . . . multitexturematerial.d
some ‘material.config json/xml normalmapmaterial.d

format), but let’s show a few package.d
] texturematerial.d
examples of code for this talk

® Graphics Programming Conference, November 18-20, Breda

Basic Material

/// An example of a basic material

e Here’s the simplest material that | —E—
. . . . 1 module basicmaterial;
just inherits from our interface
import pipeline, materials;
e ‘Update’ here are the ‘state inport platform;

/// Represents a simple material

updates, that need to tal{e p]-ace class BasicMaterial : IMaterial{

/// Construct a new material

every frame (or as often as (string pipelineName){ N

. /// delggatg to the.base constructor to do initialization
needed) for your unlform /// Argslggéigigig?éode for setup after
variables.)

/// BasicMaterial Update
override void Update(){
// Delegate to our base class to set active pipeline
.Update();
22}
}

<' Graphics Programming Conference, November 18-20, Breda

Example - Derived Material -- Textures

e Here’s an example
material that adds in

one texture
o We have to appropriately
update the ‘sampler’ that
is in the corresponding

material shader

So again -- binding to
this material handles all
the ‘state’ (uniforms,
texture binding, etc.)
that we need.

> module texturematerial;

import pipeline, materials, texture;

5 import platform;

/// Represents a simple material
class TextureMaterial : IMaterial{
fTexture m exturel;

/// Construct a new material for a pipeline, and load a texture for that pipeline
(string pipelineName, string textureFileName){
/// delegate to the base constructor to do initialization
(pipelineName) ;

rﬁ7exturel = ?exture(textureFileName);l

}

/// TextureMaterial.Update()
override void Update(){
// Delegate to our base class to set active pipeline
.Update();

// Set any uniforms for our mesh if they exist in the shader
("samp 1" in mUniformMap){

glActiveTexture(GL TEXTUREO) ;

glBindTexture(GL TEXTURE 2D,mTexturel.mTexturelD);

mUniformMap[r1"].Set(0);

<' Graphics Programming Conference, November 18-20, Breda 68 2 025

Example - Derived Material -- Multitexturing

class MultiTextureMaterial : IMaterial{
exture mlexturel;
Texture mTexture2;

e To support multitexturing, we

Texture mTexture4;

Can Simply add multiple 11/ %zgi‘iégn‘;l;eq;e}s;;‘:rlml for a pipeline, and load a texture for that pipeline
. . siring Eexiure?{emame%,
extureFileName2,
textures into another material i Torturer Notamss,
string textureFileName4

o (Either manually, or otherwise in a 1 eteaste to the bace constructor o do nitiatisation
(pipelineName) ;
data Structure) pipelineName
e Note: meires

Texture(textureFileName2);
Texture(textureFileName3);

mTextured Texture(textureFileName4);
o Multitexturing is another good '

. /// sz.x:tureﬂaterial.Update(»
example exerCISe to try to Support Over;idge;{g;gtgpgztgé?‘{base class to set active pipeline
in your shader pipelines that is not ‘”"d‘"’te”; _— —

. . // Set any uniprms for’ our mesh if they exist in the shader
always shown in all tutorials. D o

. . ngindTexture(GLfTEXTUREizD,rhTexturel.mTextu relD);
m Try it for terrains for example mUni formitap 1.5et(6)

}

<' Graphics Programming Conference, November 18-20, Breda

Building a Rendering Framework

The Scene Tree

70

Scene Tree

e We learn about Scene Tree’s in
the context of hierarchical |
. A ARERE
transformations -

https://learnopengl.com/Guest-Articles/2021/Scene/Scene-Graph

™ Graphics Programming Conference, November 18-20, Breda

https://learnopengl.com/Guest-Articles/2021/Scene/Scene-Graph

Scene Tree Data Structure

class SceneTree{
ISceneNode mRootNode;

e Provided is an example of a /7 Canera

Camera mCamera =

SceneTree] /// Default constructor for creating a new Scene Tree

(string rootName){

e) Typlcally I have a ‘ISceneNode’ // Create the initial root node.

. . // By default this is a 'GroupNode' which
type where everythlng 1mn my // does not have anything other than

// a name associated with it.

framework derives from this ; mRootNode = new GroupNode (rootName);
interface

/// Retrieve the root node

m Sometimes I store references ISceneNode GetRootNode(){

mRootNode;

to particular nodes like the }
‘mcamera’ /// Set the root node to another node.

/// Useful if you want to only traverse a part of the sub-tree.

[< void SetRootNode(ISceneNode newRootNode){
Then I have the ‘view matrix SRABENGHE = heiREaTHsda:

readily available to be '
: /// Set the camera that we will use for the scene tree traversal
apphed/replaced/updated/etc /// We also 'cache' the 'view' and 'projection' matrix

void SetCamera(Camera camera){
mCamera = camera;

<' Graphics Programming Conference, November 18-20, Breda 72 2025

Scene Tree Traversal (1/5)

//(Start the traversal of the scene tree
e Depending on your structure, a1 it
you may traverse your Scene T/ Store lists of meshes and lights
MeshNode[] meshes;
tree nodes and ‘collect’ Hiahede L Uohtes

// Figure out which nodes are meshes so that we can otherwise update the meshes.

[] L] l_ ; " .
information about them St oG e

(: (child)== y (LightNod?)){

o Note: There may be further sorting y Liohts = cast{Lighthode)chitd;
. ((child)== (MeshNode)) {

to do based on ‘order’ of rendering. meshes ~= cas (MeshNode) child;

}
}

// Perform updates on light nodes

e Then you can apply
. (1 ; lights){)
tranSformatlonS aS needed // Update all of the uniforms for the lights.

// : Lighting uniforms should be just one 'uniform buffer block' update
1.Update();

// Perform updates on mesh nodes
(m ; meshes){

<' Graphics Programming Conference, November 18-20, Breda

Scene Tree Traversal (2/5)

/// Start the traversal of the scene tree

e Have somewhere to collect o icmera it
nodes

// Store lists of meshes and lights
MeshNode[] meshes;

o Here I use asimple dynamic array LightNode(] Uights;
(e.g. Std::VGCtOI’ in C++) // Figur(”a;h(i)%; \;ﬁh;;?;ortlﬁgs;.;Eﬁi{wsigﬁ?{so that we can otherwise update the meshes.
. o // Check the types at runtime
o We could otherwise build other (typeid(child)== typeid(LightNode)){
lights ~= (LightNode)child;
structures here (e.g. octree, kd-tree,) typeid(child)= typeid(MeshNode)){

meshes ~= (MeshNode)child;

etc.) 5 1

// Perform updates on light nodes
(1 ; lights){
// Update all of the uniforms for the lights.

// : Lighting uniforms should be just one 'uniform buffer block' update
1.Update();

// Perform updates on mesh nodes
(m ; meshes){

<' Graphics Programming Conference, November 18-20, Breda

Scene Tree Traversal (3/5)

/// Start the tra 1 of the scene tree

e [teration step, simply collects |t
per type I have into my }

(. -
// Store lists of meshes and lights
. MeshNode[] meshes;
previous data structure Lol gt
// Figure out which nodes are meshes so that we can otherwise update the meshes.
(child ; mRootNode.mChildren){
// Check the types at runtime

((child)== (LightNode)){
lights ~= (LightNode)child;

((child)== (MeshNode)) {
meshes ~= (MeshNode)child;

// Perform updates on light nodes
(1 ; lights){
// Update all of the uniforms for the lights.

// : Lighting uniforms should be just one 'uniform buffer block' update
1.Update();

// Perform updates on mesh nodes
(m ; meshes){

<' Graphics Programming Conference, November 18-20, Breda

Scene Tree Traversal (4/5)

/// Start the tra 1 of the scene tree

void StartTraversal(){

e ThenIdo something with my nesers 0

}

COlleCtionS Of partiCU]'ar nOdeS // Store lists of meshes and lights

MeshNode[] meshes;
LightNode[] lights;

// Figure out which nodes are meshes so that we can otherwise update the meshes.
(child ; mRootNode.mChildren){

// Check the types at runtime
((child)== (LightNode)){

lights ~= (LightNode)child;

}
((child)== (MeshNode)) {

meshes ~= (MeshNode)child;

// Perform updates on light nodes
(L ; lights){
// Update all of the uniforms for the lights.
// : Lighting uniforms should be just one 'uniform buffer block' update

1.Update();

(m ; meshes){

<' Graphics Programming Conference, November 18-20, Breda

Scene Tree Traversal (5/5)

/// Start the traversal of the scene tree

. id StartT 104
e Note: "% (ncanera 1o null){

(o,

o In the example provided with the b
lights and meshes, it may be TQEE‘N%[%“&I’ e
interesting tO further eXperiment // Figur(”a;h(i)%; \;ﬁh;;?;ortlﬁgs;.;Eﬁi{wsigﬁ?{so that we can otherwise update the meshes.
and sort/collect each entity type i S e S
based on the ‘pipeline’ they use or (ughtjc;d):(Lighm;’::::::;H
state transformations otherwise g eotes s Eesiiode aul

}

// Perform updates on light nodes
(1 ; lights){
// Update all of the uniforms for the lights.

// : Lighting uniforms should be just one 'uniform buffer block' update
1.Update();

// Perform updates on mesh nodes
(m ; meshes){

<' Graphics Programming Conference, November 18-20, Breda

Meshes Scene Tree Traversal

/// Start the traversal of the scene tree

o Asmentioned earlier, there’s an |EESEE
interesting opportunity to }

// Store lists of meshes and lights
MeshNode[] meshes;

Optimize or ‘prune, at this LightNode[] lights;

// Figure out which nodes are meshes so that we can otherwise update the meshes.

3 t (child ; mRootNode.mChildren){
pOIH . // Check the types at runtime

o frustum culling (or you could also . lightécgd)““ighth(’bé?E*t‘??g?)H
perform occlusion culling on the oo T s it
meSheS) is an lntereSting thlng to z/ Perform updates on light nodes
try here (U lghts){

// Update all of the uniforms for the lights.

// : Lighting uniforms should be just one 'uniform buffer block' update
1.Update();

// Perform updates on mesh nodes
(m ; meshes){

<' Graphics Programming Conference, November 18-20, Breda

CPU Frustum Culling

e For each of our meshes, if each of
the points of their Axis-Aligned

Bounding Boxes (AABB) falls within
the view frustum, we can keep

them.

o We can compute this as we collect our
meshes every frame (or perhaps every
few frames based on camera and position
updates)

o See link below for a single function
implementation

-, Graphics Programming Conference, November 18-20, Breda

struct Frustum

{

Plane
Plane

Plane
Plane

Plane
Plane

topFace;
bottomFace;

rightFace;
leftFace;

farFace;
nearFace;

https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling

Meshes Pruned (View frustum culling)

Here is an example of how to (child ; nRootNode.nChildren) {
prune our meshes before they]
get to a draw call - cshlioge
. . (mCamera.MeshInFrustum(child))
o And look! Now we can highlight meshes ~= cast (MeshNode)child;

something in our render pipeline!

View Frustum Culling Draw Mesh

Note: We can do the same sort of pruning for lights, and we may
do other sorts of pruning based on distance, occlusion, etc.

™ Graphics Programming Conference, November 18-20, Breda

Using the Framework

Gives yourself a sandbox to learn

81

‘Free Yourself to Experiment (1/4)

graphics_app;

I
d core, geometry, light, linear, materials, platform;
e At some point,

MyGraphicsApp : GraphicsApp{
title, i width, height, major_ogl_version, i minor_ogl version){

Creating a ‘Scene’ Or (title,width,height,major_ogl version,minor_ogl version);
¢ b 3 y void SetupS (O

App’ abstraction can

be handy ;‘I‘%Igiéli“ggl gg:mzngerial i :i?;;{;:;()Material(

ISurface obj = MakeTexturedNormalMappedQuad();

9 3 MeshNod = MeshNode (,obj, ™ ial);
Let’s break this down Reciiods 1 = Tox Bestfode(M, ool o el its

jU.St Sllghtly Update(){

t yRotation = E yRotation +=

MeshNode m = (MeshNode)mSceneTree.FindNode ()%

m.LoadIdentity().Translate(5 e) .RotateY(yRotation);

i main([1 args)

GraphicsApp app = MyGraphicsApp(
app.Loop();

<' Graphics Programming Conference, November 18-20, Breda 82 2025

‘Free Yourself to Experiment (2/4)

e At some point,
creating a ‘Scene’ or
‘App’ abstraction can
be handy
Let’s break this down

just slightly

Here’s the entry point into my
program -- very clean and simple
e Depending on your language,
you might wrap this in a
try/catch (when in ‘debug
mode’) to try to log errors.

™ Graphics Programming Conference, November 18-20, Breda

graphics_app;

core, geometry, light, linear, materials, platform;

MyGraphicsApp : GraphicsApp{

title, i width, height,

major_ogl version, int minor_ogl version){

(title,width,height,major_ogl version,minor_ogl version);

SetupScene(){

Pipeline normalMap =
IMaterial normalMaterial =

Pipeline('
NormalMapMaterial(

ISurface obj = MakeTexturedNormalMappedQuad();

MeshNode m = MeshNode (,obj,normalMaterial);
mSceneTree.GetRootNode () .AddChildSceneNode(m) ;
Update(){

yRotation = yRotation +=

MeshNode m = (MeshNode)mSceneTree.FindNode ()%

m.LoadIdentity().Translate() .RotateY(yRotation);

main(

GraphicsApp app =

app.Loop();

[1 args)

MyGraphicsApp(

‘Free Yourself to Experiment (3/4)

This chunk of code is the
entirety of the graphics
application

o Loading data

o What to do every iteration

of the loop

Now | can just ‘play’ and utilize
the rest of my framework
otherwise

™ Graphics Programming Conference, November 18-20, Breda

graphics_app;

core, geometry, light, linear, materials, platform;

MyGraphicsApp : GraphicsApp{

title, i width, height, major_ogl_version, minor_ogl version){

(title,width,height,major_ogl version,minor_ogl version);

SetupScene(){

Pipeline normalMap = Pipeline(

IMaterial normalMaterial = NormalMapMaterial(
ISurface obj = MakeTexturedNormalMappedQuad();

MeshNode m = MeshNode (,obj,normalMaterial);
mSceneTree.GetRootNode () .AddChildSceneNode(m) ;
Update(){

yRotation = E yRotation +=

MeshNode m = (MeshNode)mSceneTree.FindNode ()%

m.LoadIdentity().Translate() .RotateY(yRotation);

main(

[1 args)

GraphicsApp app = MyGraphicsApp(
app.Loop();

‘Free Yourself to Experiment (4/4)

e Now I can just focus
on the interesting
parts

o Writing shaders, and
the user code to get
things moving

<' Graphics Programming Conference, November 18-20, Breda 85

graphics_app;

core, geometry, light, linear, materials, platform;

MyGraphicsApp : GraphicsApp{

title, i width, height,

major_ogl version, int minor_ogl version){

(title,width,height,major_ogl version,minor_ogl version);

I main(

GraphicsApp app =

app.Loop();

SetupScene(){

Pipeline normalMap = Pipeline(f
IMaterial normalMaterial = NormalMapMaterial(
ISurface obj = MakeTexturedNormalMappedQuad();

MeshNode m = MeshNode (,obj,normalMaterial);
mSceneTree.GetRootNode () .AddChildSceneNode(m) ;
Update(){

yRotation = E yRotation +=
MeshNode m = (MeshNode)mSceneTree.FindNode ()%
m.LoadIdentity().Translate() .RotateY(yRotation);

[1 args)

MyGraphicsApp(

2025

The Compute Shader

Compute Shaders

<' Graphics Programming Conference, November 18-20, Breda

In regards to shaders, compute
shaders are a good place to
potentially move work for some
tasks

We can again create a ‘Pipeline’

abstraction,

o Ichoose to separate out Compute
pipelines from ‘Graphics pipelines’
(vertex + fragment)

m Why? Because it’s not part of the
graphics pipeline

m That said -- creating an interface
can further allow customization
of members (e.g. an SSBO for
storage and transfer of data
between pipeline stages)

43 +--

23 lines: °

ComputeShader{

GLuint mProgramID;

shaderCode =

(cor * computePath){
GLint success;

int computeShader;
computeShader = glCreateShader(GL COMPUTE SHADER) ;
ir* computeSource = shaderCode.ptr;
glShaderSource(computeShader, 1, &computeSource,)
glCompileShader(computeShader);
glGetShaderiv(computeShader, GL COMPILE STATUS, &success);
GLchar(] infolog;
('success){
glGetShaderInfolLog(computeShader, ;
writeln(

, infolLog.ptr);
, infolog);
}

mProgramID = glCreateProgram();

glAttachShader(mProgramID, computeShader);

glLinkProgram(mProgramID) ;

glGetProgramiv(mProgramID, GL LINK STATUS, &success);
(!success)

glGetProgramInfolLog(mProgramID,
writeln(

. , infolLog.ptr);
, infolog);

id Execute(){
glUseProgram(mProgramID) ;

7 2025

GPU (Compute Shader) Frustum Culling

e So the next challenges may be to approach the same problem we
tackled (view frustum culling) but instead do it with a compute
shader on the GPU

o Nice talk last year on GPU occlusion culling techniques
m https://www.youtube.com/watch?v=gCPgpvF1rUA&list=PLLaly9x9rqjsXLW
1tMFruyh 657sh8epk&index=11&t=335s
o There are a few more specific tutorials in the GPU Gem series on view frustum
culling
m https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-compl
exity/chapter-2-terrain-rendering-using-gpu-based-geometry
o The question to ask however, is how to ‘store’ data across pipelines?
m For this, we can then learn about Shader Storage Buffer Objects

-, Graphics Programming Conference, November 18-20, Breda

https://www.youtube.com/watch?v=gCPgpvF1rUA&list=PLLaly9x9rqjsXLW1tMFruyh_657sh8epk&index=11&t=335s
https://www.youtube.com/watch?v=gCPgpvF1rUA&list=PLLaly9x9rqjsXLW1tMFruyh_657sh8epk&index=11&t=335s
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry

Pipelining Pipelines (1/2)

e Hopefully some thoughts about
‘transferring’ data across shaders

are percolating
o l.e.IfI'wantto do GPU frustum culling,
how do I store objects?

m What do I store? (e.g. position,
bounding box?)

m Should I create a graph of my
pipelines to pass data around to
enforce order?

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

(Slides)

™ Graphics Programming Conference, November 18-20, Breda

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Pipelining Pipelines (2/2)

e ‘Deferred rendering’ or ‘shadow
mapping’ tutorials are the next

good place to look
o You will learn how to ‘compose’
information and store it for the next
stage of a pipeline

m GPU storage ranges from ‘image’
and ‘texture’ data to more generic
storage like SSBO’s and UBO'’s.

m You can then otherwise effectively
think of each of your ‘Pipelines’
with a common SSBO (for
example) as a way to ‘piping data’
(Unix Style) along a fixed size
buffer per draw call or compute
shader dispatch

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

(Slides)

™ Graphics Programming Conference, November 18-20, Breda

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Your learning Future

How to learn more graphics

91

The Future (for you) (1/2)

e Earlier in this presentation I said:
“I still think (and hear from others as well) Modern OpenGL is a
good place to start your graphics journey”

e One of the tricks here is then to try to render lots of objects in

OpenGL

o Simple as that
m This will force you into problem solving mode:
e (e.g.Frustum culling that we looked at)
What about instancing?
What is multipass?
How do I minimize state change, or reduce
etc.

™ Graphics Programming Conference, November 18-20, Breda

The Future (for you) (2/2)

e So what about what comes after -- when you want to learn the
other modern APIs that reflect what GPU does?

o Icanrecommend SDL GPU
m [tis an abstraction layer on top of Vulkan, D3D12, and Metal -- likely similar
to what you’d build yourself
e Still forces you to program however in the way you would with these
APIs, but with a bit less boilerplate
o If you’re here at GPC, you likely are motivated to just dive in
m You otherwise could spend some time in something like
https://vulkan-tutorial.com/
e Porting a previous project (or learnopengl.com tutorial) over may be a
good way to guide yourself so you can focus on learning the API and
reduce cognitive overhead.

™ Graphics Programming Conference, November 18-20, Breda

https://wiki.libsdl.org/SDL3/CategoryGPU
https://vulkan-tutorial.com/

Frame Breakdowns

2020/04/16

e There are various frame
breakdowns that you can
investigate and may be helpful &

e However -- if you still find those [
overwhelming, reading source
code of hobby engines (smaller s

o TI'veliked reading the Horde3D 2023/06/05

2022/04/21 ITEARDOWN |

il’l Size) can be Very Valuable. 2022/04/21 O TEARDOWN |

_ Minecraft RTX

Death Stranding

Mafia: Definitive Edition

Cyberpunk 2077

Cyberpunk 2077

" Knockout City

God of War (PC)

Elden Ring

Teardown

Teardown

Diablo IV

2020/05/19

2022/11/30

2021/08/23

2020/12/12

2020/12/17

2023/12/15

2022/01/18

2022/05/25

2023/01/24

2023/02/20

2023/06/28

engil’le (a. bit Older), OGREBD, https://www.adriancourreges.com/blog/2020/12/29/graphics-studies-compilation

Wicked3D to get ideas about
abstractions.

) Graphics Programming Conference, November 18-20, Breda

https://www.adriancourreges.com/blog/2020/12/29/graphics-studies-compilation/

Texture Viewer |2 Pipeline State | Mesh Viewer | 2 Launch Application | X Resource Inspector X

e GPU Debuggers can themselves be very handy for

navigating a scene
o Using a free one like Renderdoc to navigate the events may
help you put together the ‘frame’ in an easy way
o 1l.e.You can download a tutorial (or run an actual game) and
navigate step by step a frame captured
m Renderdoc: https://renderdoc.org/
Similar debuggers like Pix for D3D exist:
m https://devblogs.microsoft.com/pix/gpu-captures/

™ Graphics Programming Conference, November 18-20, Breda

https://renderdoc.org/
https://devblogs.microsoft.com/pix/gpu-captures/

Rapid Prototyping

e If you want to just play around with
visuals, it may be useful to use
rapid prototyping node-based
shader tools or engines to
experiment, learn different effects,

e Gigi: A Platform for Rapid Graphics

etc. Development and Code Generation
o https:/www.voutube.com/watch?v=MgCR
e Look at tools such as: Kkyv623 GPC 2024

o https://www.ea.com/seed/news/gigi

o Gigi
o Shadertoy

) Graphics Programming Conference, November 18-20, Breda

https://www.youtube.com/watch?v=MgCR-Kky628
https://www.youtube.com/watch?v=MgCR-Kky628
https://www.ea.com/seed/news/gigi

Resources

CODIGDTURE

e My recommendation would be to take some
inspiration from the resources below -- there’s

often useful graphics knowledge found

o ButIthink the ‘build up’ and seeing how each person slowly

tackles and iterates on a more complicated effect is the real
value

e Some Inspiration on YouTube
o Sebastian Lague

m https://www.youtube.com/@SebastianlL.ague/videos
o Acerola
m https://www.youtube.com/@Acerola t/videos
o Jasper: https:/www.youtube.com/@JasperRLZ
m https://www.youtube.com/watch?v=By7qcgaqGIi4 The
Glitch that Broke Link's Cel Shading

™ Graphics Programming Conference, November 18-20, Breda

Coding Adventure: Rendering Fluids

826K views + 10 months ago

| Tried Rendering Millions Of Particles

487K views * 11 months ago

The Glitch that Broke Link's Cel Shading

657K views + 2 years ago

https://www.youtube.com/@SebastianLague/videos
https://www.youtube.com/@Acerola_t/videos
https://www.youtube.com/@JasperRLZ
https://www.youtube.com/watch?v=By7qcgaqGI4

e Today I’ve spent a bit of time talking about (hopefully) some useful
topics on engineering a graphics framework

e Hopefully this will accelerate a bit how you see these pieces fit
together, and give you some ideas of building a framework to
accelerate your learning

e The next step is to start getting inspired, try recreating effects you
see in games, and playing around in your graphics framework
sandbox.

™ Graphics Programming Conference, November 18-20, Breda

Web:
3 YouTube

Social:

Courses:

Talks:

, fragmentShaderSourceFilend k :

Thank you Graphics
Programming Conference for
having me!

mpilation
t, GL COMPILE STATUS, &result)s

mshah.io 9 Graphics
www.youtube.com/c/MikeShah - (P:ros%rammmg 5
mikeshah.bsky.social onterence "°"°“"°°"° g

courses.mshah.io 60 minutes | Audience: Beginner

http://tinyurl.com/mike-talks 13:30pm - 14:30pm Thur, Nov. 20, 2025

https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Thank you!

