
1

Yale University

Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice
● This slideset may not be mined using AI or algorithms and

otherwise generating derivative products without permission.

2

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

After the Tutorial: Where to Continue
your Graphics Programming Journey

333

Web: mshah.io
 www.youtube.com/c/MikeShah

Social: mikeshah.bsky.social
Courses: courses.mshah.io 60 minutes | Audience: Beginner
Talks: http://tinyurl.com/mike-talks 13:30pm - 14:30pm Thur, Nov. 20, 2025

https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

4

Talk Abstract: There exist many great courses, tutorials, and books that describe the
fundamentals of graphics programming with various graphics APIs like OpenGL, DirectX,
Vulkan, etc. However, the next chapter often missing from tutorials, is how to start building
a rendering pipeline that puts these features into a unified framework. In this talk, I will
discuss 'the next chapter' of the graphics programming tutorial that describes how to build a
rendering framework: automatically parsing uniforms, handling materials, uniting the
compute and graphics shaders, navigating the scene tree, and bringing order to a graphics
pipeline that has multiple passes over a series of frames. This talk is targeted towards folks
who are newer to graphics programming with an API, but who otherwise have dabbled
enough to have implemented the phong illumination model. After leaving this talk, audience
members will have a path forward toward implementing a graphics framework, and
otherwise understanding graphics architecture talks with big pipelines.

● Duration: 60 minutes

Your Tour Guide(s) for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

5

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Find my programming content on YouTube
https://www.youtube.com/c/mikeshah

6

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

https://www.youtube.com/c/mikeshah
http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

7

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

Search my
YouTube for
resources on

Graphics
Programming

Find my programming content on YouTube
https://www.youtube.com/c/mikeshah

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks
https://www.youtube.com/c/mikeshah

8

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

Okay -- enough about me
-- on to the talk!

Find my programming content on YouTube
https://www.youtube.com/c/mikeshah

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks
https://www.youtube.com/c/mikeshah

I can’t help but be inspired when I see...

9

DOOM: The Dark Ages | Official Trailer 1 (4K) | Coming 2025 https://www.youtube.com/watch?v=4tk8lkmYGWQ (Please note -- these are .gifs I captured at 12 frames per second -- see the trailer for actual footage)

https://www.youtube.com/watch?v=4tk8lkmYGWQ

Enshrouded - Official Early Access Launch Trailer https://www.youtube.com/watch?v=BSSIH5L2liI (Please note -- these are .gifs I captured at 12 frames per second -- see the trailer for actual footage)

https://www.youtube.com/watch?v=BSSIH5L2liI

Battlefield 6 Official Reveal Trailer https://www.youtube.com/watch?v=pgNCgJG0vnY (Please note -- these are .gifs I captured at 12 frames per second -- see the trailer for actual footage)

https://www.youtube.com/watch?v=pgNCgJG0vnY

Incredible work! (1/2)

13

● You get the idea that these are incredibly
impressive works of engineering and art

● I’m yet the humble academic (and
occasional contract graphics programmer)
these days -- incredibly impressed by the
work done at this conference and beyond!

https://www.graphicsprogrammingconference.nl/

https://www.graphicsprogrammingconference.nl/

Incredible work! (2/2)

● And -- if you worked on those games, I
apologize in advance -- you probably will
unlikely learn too many graphics
programming techniques from this session.

● That said -- you may be able to contribute
valuable knowledge (in the audience, or
comments in the future) to someone who is
beginning their graphics programming
journey

○ That is what this talk is about, and to hopefully
help at least one person on their journey

14

So where does the journey begin for a
graphics programmer?

15
https://www.newzealand.com/assets/Tourism-NZ/Hamilton-Waikato/img-1536068317-157-18524-p-836AD8D5-C0D6-A3AA-232CCF3DB3EF1DC0-2544003__aWxvdmVrZWxseQo_FocalPointCropWzM1MiwxMDI0LDQzLDQ2LDc1LCJqcGciLDY1LDIuNV0.jpg

https://www.newzealand.com/assets/Tourism-NZ/Hamilton-Waikato/img-1536068317-157-18524-p-836AD8D5-C0D6-A3AA-232CCF3DB3EF1DC0-2544003__aWxvdmVrZWxseQo_FocalPointCropWzM1MiwxMDI0LDQzLDQ2LDc1LCJqcGciLDY1LDIuNV0.jpg

Graphics Tutorials (1/2)

16

● If you are a student, hobby programmer,
or someone trying to transition into this
industry -- how do you get started?

● Well -- there are a good number of written
tutorials on graphics APIs

○ e.g.
○ OpenGL: https://learnopengl.com/
○ Vulkan: https://vulkan-tutorial.com/
○ Metal: https://developer.apple.com/metal/
○ D3D:

https://learn.microsoft.com/en-us/windows/wi
n32/direct3d12/directx-12-programming-guide

https://learnopengl.com/
https://vulkan-tutorial.com/
https://developer.apple.com/metal/
https://learn.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide
https://learn.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide

Graphics Tutorials (2/2)

17

● I’ve primarily lived in OpenGL both
academically and professionally

● I *still* believe Modern OpenGL (4+) is
a good place to start your graphics
journey.

○ I have heard this advice echo’d at
SIGGRAPH community as well for someone
self-teaching or a university student

■ I’ll otherwise have some
recommendations on how to move to
the modern graphics APIs later on

■ For folks wanting to work on games
presented at GPC -- I suspect however
you will need Vulkan, D3D12, Metal,
etc.

OpenGL Graphics Tutorials (1/8)

18

● So what can you learn from a Graphics (e.g. OpenGL)
tutorial?

○ And when I mention OpenGL I mean ‘Modern OpenGL’ (Version 3.3
or later)

○ Ideally at least OpenGL version 4.1 (Mac’s maximum supported
version), gets you indirect rendering, multidraw features

○ Even better if you can run OpenGL 4.6 which gives you:
■ 4.3 features: compute shaders, better debug, Shader Storage

Buffer Objects,
■ 4.6 features: SPIR-V, more Direct State Access (DSA)

OpenGL Graphics Tutorials (2/8)

19

● The essentials you’ll learn are:
○ Learn how a graphics API has a bunch of function calls that

communicate with the GPU
■ Note: Your graphics card vendor (or perhaps open source

project), implements the ‘driver’ to communicate between the
CPU and GPU

https://learnopengl.com/Getting-started/OpenGL

https://learnopengl.com/Getting-started/OpenGL

OpenGL Graphics Tutorials (3/8)

20

● The essentials you’ll learn are:
○ Eventually you’ll render a triangle

https://learnopengl.com/Getting-started/Hello-Triangle

https://learnopengl.com/Getting-started/Hello-Triangle

OpenGL Graphics Tutorials (4/8)

21

● The essentials you’ll learn are:
○ You’ll learn some 3D Math

■ And you will gain some linear algebra intuition about
transformations

https://learnopengl.com/Getting-started/Transformations (I actually wrote this demo myself, but read this chapter to learn how)

https://learnopengl.com/Getting-started/Transformations

OpenGL Graphics Tutorials (5/8)

22

● The essentials you’ll learn are:
○ Then you’ll understand a bit about shaders

■ Sampling texture data to add more detail

https://learnopengl.com/Getting-started/Textures

https://learnopengl.com/Getting-started/Textures

OpenGL Graphics Tutorials (6/8)

23

● The essentials you’ll learn are:
○ You’ll then apply some of that same math you learned for

transformations and apply it for diffuse lighting or perhaps
the phong illumination model

https://learnopengl.com/Lighting/Basic-Lighting

https://learnopengl.com/Lighting/Basic-Lighting

OpenGL Graphics Tutorials (7/8)

24

● The essentials you’ll learn are:
○ You’ll then learn that ‘textures as data’ is a good trick to help

you compute per-pixel lighting tricks like normal mapping

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

OpenGL Graphics Tutorials (8/8)

25

● If most of this progression made sense to
you -- you’re in the right place

○ You’ve probably done your homework and
otherwise done a bit of graphics programming

○ And if most of the topics I showed make sense to
you -- great!

■ So what next?

The premise of this talk

26

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

There’s a lot of really
exciting graphics
happening here!

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

In fact, a whole
pipeline of interesting

graphics effects

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

So how do I get
there?

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Graphics Pipelines* (1/2)

● The premise of this talk is what do I
learn next in graphics as a
beginner?

● I watched ~3.5 years ago a talk by
Kevin Todisco who helped build the
Diablo II Resurrected renderer shown

○ And what I realized while watching, (even
after having worked as a graphics
programmer)

■ I really did not have (or think about)
my graphics pipeline with respect to
all the stages that create the final
scene -- and I’m not sure when I
acquired the ability to also think
about render pipelines

■ Something was missing in the
middle of my learning

31

An Overview of the 'Diablo II: Resurrected' Renderer
https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)
Note: The reason I picked this as an example

1.) It was a nice talk
2.) Kevin Todisco was very nice to me after the talk answering a

graphics question (we had never met before).

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Graphics Pipelines* (2/2)

32

● I understood the graphics pipeline
-- but I did not understand
graphics pipelines and how to
compose a larger and functional
graphics framework

○ Let me explain

An Overview of the 'Diablo II: Resurrected' Renderer
https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)
Note: The reason I picked this as an example

1.) It was a nice talk
2.) Kevin Todisco was very nice to me after the talk answering a

graphics question (we had never met before).

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

My Problem (1/5)

33

● For years I understood well how to follow graphics
tutorials -- and recreate the desired effects well
enough to:

○ Recreate an effect
○ Experiment a little bit

■ (i.e. not copy & paste, but type out every line of code,
lookup functions I do not understand, try to draw the math,
etc.)

My Problem (2/5)

34

● (Aside) Something I found helpful too was to translate into different
languages (e.g. D programming language)

○ C++ remains king in the graphics domain, but use whatever you
want learn.

○ (Pro tip: This is a hack I’ve used to avoid ever getting lazy and
being tempted to copy and paste -- when you have to think in
another language at the least I find myself oddly learning better
even in domains outside of graphics, because I really have to
understand the problem.)

○ C++ to D translation guide for today
■ unordered_map<key,value> map;

● value[key] map;
■ std::println

● writeln

My Problem (3/5)

35

Hello Triangle

The Problem: How do I go from
writing a bunch of code in a single
source file to these neat little boxes
that make graphics ‘pipelines’

My Problem (4/5)

36

Hello Triangle

Important (opinionated) Teaching Note:

● I *encourage* the approach that
learnopengl.com does not present some
heavy abstraction / framework
○ At least for the foundations, too much

abstraction just means I’m learning
someone else's abstraction instead of
the one single thing I’m trying to learn
and developing my mental model

● This tutorial does its job of teaching
OpenGL quite well
○ https://antongerdelan.net/opengl/ and

http://www.opengl-redbook.com/ also
are great for this purpose

○ Note: Some of the learnopengl guest
articles and game series otherwise
show how to put more things together!

http://learnopengl.com
https://antongerdelan.net/opengl/
http://www.opengl-redbook.com/

My Problem (5/5)

37

Hello Triangle

● So -- after these tutorials end --
what happens next?

● How do I do the abstraction (the
‘missing middle education’)
○ There’s a lot of ‘intro level’ and

‘expert level’ stuff out there which
is great, but we need more in the
middle (some which is at this
conference!)

Note: When I teach graphics in a semester
course -- we *usually* do build up a
reusable framework from scratch -- but I
think there’s a gap in literature here.

Building a Rendering Framework
General Architecture

38

Goal

● So let’s figure out some projects, techniques, and things to try to
get us ‘beyond’ the tutorial content we usually find.

● My goal here: is to help you setup your own ‘playground’ or
boilerplate so you can experiment in graphics and see how these
pieces fit together.

39

Two Main Ideas in Modern OpenGL Programming (1/2)

40

● From a Modern OpenGL Perspective
-- there’s really two big ideas to
understand

○ Big Idea #1 Buffers of data that get
uploaded to the GPU from the CPU

○ Big Idea #2 Shaders are programs that
execute on the GPU

● So in my mind, we need to learn
how to manage or provide the right
level of abstraction

○ (Then we can just write the interesting or
creative code that is more fun)

An Overview of the 'Diablo II: Resurrected' Renderer
https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Two Main Ideas in Modern OpenGL Programming (2/2)

41

● (Aside)
○ Big Idea #3 For even more modern APIs

involve ‘command buffer’ or ‘Render
Passes’ that encapsulate all state

● Note:
○ Studying an API like Vulkan, will

probably really help how you structure
code at least for the ‘command buffer’
abstraction in older API’s

○ In fact, some of the ‘abstraction’ today
we’ll study with uniforms informs
uniform abstractions in Vulkan

An Overview of the 'Diablo II: Resurrected' Renderer
https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Big Idea #1 and #2
Abstracting our shaders and buffers

42

‘Pipeline’ abstraction (1/3)

43

● One of the first things to
find the right level of
abstraction for is
‘shaders’

● Shaders grouped
together (or composed)
make ‘pipelines’

○ Even in the naming of the
datatype to a ‘pipeline’ I
found useful for my
understanding.

‘Pipeline’ abstraction (2/3)

44

● I’ve highlighted the key
parts of my abstraction

○ An ‘id’ (program ID)
○ A name for the pipeline

■ (Human-readable way
to refer to a pipeline)

○ The shader objects:
■ vertex shader
■ fragment shader

‘Pipeline’ abstraction (3/3)

45

● There’s also something
else potentially
interesting here

○ Uniforms
■ (And in particular,

perhaps caching their
locations)’

Building a Rendering Framework
Organizing your Uniforms

46

Uniforms (1/5)

● In shader programming we learn about how to send data from our
CPU to GPU using a ‘uniforms’ (i.e. constants in our pipeline) that
have their value sent in

○ When I learn (or first teach) uniforms I write my code that looks something like
this.

47

Uniforms (2/5)

● Doing the prior setup, is
tedious and potentially error
prone

○ So writing some ‘wrapper’ type
for a Uniform can be useful.

48

Uniforms (3/5)

● Provided to the right is an
example where I create the
uniform type initialized with
data of that type

49

Uniforms (4/5)

● When it comes time to
‘update’ my data, I can call a
simple ‘Transfer’ function

○ (‘Transfer’ representing the
action of updating the value at
the ‘location’ of the uniform
from CPU to GPU)

50

Uniforms (5/5)

● Some things like the uniform
location could also be
potentially cached
per-pipeline.

51

Caching Uniforms

● (Top code snippet)
○ Here’s a quick example of

my ‘caching’ of a uniform
location

● (Bottom code snippet)
○ Probably more interesting

is the types of error
reporting that are enabled
by having this type of
abstraction

■ (See url in comment
for more)

52

Shader introspection

● (Aside)
○ Here’s a helper function to

print out the uniforms and
attributes from our
pipelines

○ This can be helpful for
debugging

● It’s generally useful for
debugging -- though
tools like renderdoc are
also quite handy here.

53

Uniform Buffer Block (UBO) Abstraction

● Note:
○ This same abstraction of a

‘Uniform’ can also be
applied to things like
Uniform Buffer Blocks
(UBO)

■ Useful if we have a
collection of shared
uniforms.

○ Please feel free to pause
later and read the
comments on the idea
here.

54

Where do Uniforms get Used? (1/3)

● So we bind our uniforms
before doing something
with a ‘pipeline’

○ e.g. Setup our uniforms
prior to a glDraw* call

● So with the example on
the right -- we can
improve this by
‘grouping’ together
related uniforms

55

Where do Uniforms get Used? (2/3)

● Observe there are three
blocks to generally set
things up

○ Select the pipeline
○ Setup the uniforms and

bind any state
○ Perform the draw call based

on the state of OpenGL

56

Where do Uniforms get Used? (3/3)

● Observe there are three
blocks to generally set
things up

○ Select the pipeline
○ Setup the uniforms and

bind any state
○ Perform the draw call based

on the state of OpenGL

57

We can simplify this step
quite a bit!

Materials (1/3)

● We can group together
uniforms and the
pipeline that they use in
a material.

58

Materials (2/3)

● Organizing into
Materials makes it easier
to work with uniforms
and state alongside your
graphics pipelines

○ Everything is in one place
● On a material basis -- we

can ‘add uniforms’ based
on some convention --
usually during
construction

○ (e.g. uModel, uView,
uProjection)

59

Materials (3/3)

● No one really told me
however -- that instead of
‘manually’ adding the
uniforms into your map --
you could actually just
parse them!

● Note:
○ Learning Tip: Learning these

things/tricks often comes
from reading other folks
source code.

■ Read other folks ‘hobby
engines’ or smaller
open-source graphics
engines to see how folks
solved problems

60

Parsing Uniforms (1/2)

● So you might have
observed -- as soon as I
create a pipeline -- I just
parse the uniforms

○ (We have the shader text
usually, or could otherwise
do some introspection after
we compile the shader)

61

Parsing Uniforms (2/2)

● So you might have
observed -- as soon as I
create a pipeline -- I just
parse the uniforms

● Thus you can try is to
automate the parsing of
uniforms

● The point of this is to
‘free’ you up from
managing your uniform
variables as you
experiment.

62

Parsing Uniforms - Introspection

63

● Note:
○ Generic programming on Uniforms

to automatically write helper
functions and parse things like
‘structs’ can be used.

● Capabilities may vary based on
programming language

○ C++26 will support more static
reflection^^ that could support
something like this natively

○ D has this capability already
○ Preprocessor/external libraries may

otherwise help achieve techniques
as shown

Building a Rendering Framework
Handling Materials

64

Material Systems (1/2)

65

● I introduced this
‘material’ interface which
is our collection of
uniforms and a pipeline

● The point of the material
system is to create our
‘per-object’ (or group of
objects) specific way of
drawing something

○ i.e. Simply bind a new
material prior to a glDraw*
function

Material Systems (2/2)

66

● Each file displayed is an
example of a different material

● Note: We can do better and
make this data-driven (e.g.
some ‘material.config json/xml
format), but let’s show a few
examples of code for this talk

Basic Material

67

● Here’s the simplest material that
just inherits from our interface

● ‘Update’ here are the ‘state
updates’ that need to take place
every frame (or as often as
needed) for your uniform
variables.

Example - Derived Material -- Textures

68

● Here’s an example
material that adds in
one texture

○ We have to appropriately
update the ‘sampler’ that
is in the corresponding
material shader

○ So again -- binding to
this material handles all
the ‘state’ (uniforms,
texture binding, etc.)
that we need.

Example - Derived Material -- Multitexturing

69

● To support multitexturing, we
can simply add multiple
textures into another material

○ (Either manually, or otherwise in a
data structure)

● Note:
○ Multitexturing is another good

example exercise to try to support
in your shader pipelines that is not
always shown in all tutorials.

■ Try it for terrains for example

Building a Rendering Framework
The Scene Tree

70

Scene Tree

71

● We learn about Scene Tree’s in
the context of hierarchical
transformations

https://learnopengl.com/Guest-Articles/2021/Scene/Scene-Graph

https://learnopengl.com/Guest-Articles/2021/Scene/Scene-Graph

Scene Tree Data Structure

72

● Provided is an example of a
SceneTree

○ Typically I have a ‘ISceneNode’
type where everything in my
framework derives from this
interface

■ Sometimes I store references
to particular nodes like the
‘mCamera’

■ Then I have the ‘view matrix’
readily available to be
applied/replaced/updated/etc

Scene Tree Traversal (1/5)

73

● Depending on your structure,
you may traverse your scene
tree nodes and ‘collect’
information about them

○ Note: There may be further sorting
to do based on ‘order’ of rendering.

● Then you can apply
transformations as needed

Scene Tree Traversal (2/5)

74

● Have somewhere to collect
nodes

○ Here I use a simple dynamic array
(e.g. std::vector in C++)

○ We could otherwise build other
structures here (e.g. octree, kd-tree,
etc.)

Scene Tree Traversal (3/5)

75

● Iteration step, simply collects
per type I have into my
previous data structure

Scene Tree Traversal (4/5)

76

● Then I do something with my
collections of particular nodes

Scene Tree Traversal (5/5)

77

● Note:
○ In the example provided with the

lights and meshes, it may be
interesting to further experiment
and sort/collect each entity type
based on the ‘pipeline’ they use or
state transformations otherwise

Meshes Scene Tree Traversal

78

● As mentioned earlier, there’s an
interesting opportunity to
optimize or ‘prune’ at this
point.

○ frustum culling (or you could also
perform occlusion culling on the
meshes) is an interesting thing to
try here

● Note: ‘multipass’ rendering is
perhaps another interesting
topic to explore at this stage

CPU Frustum Culling

79

● For each of our meshes, if each of
the points of their Axis-Aligned
Bounding Boxes (AABB) falls within
the view frustum, we can keep
them.

○ We can compute this as we collect our
meshes every frame (or perhaps every
few frames based on camera and position
updates)

○ See link below for a single function
implementation

○ Note: You may also choose to experiment
with bounding spheres.

https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling

https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling

Meshes Pruned (View frustum culling)

80

● Here is an example of how to
prune our meshes before they
get to a draw call

○ And look! Now we can highlight
something in our render pipeline!

View Frustum Culling Draw Mesh

Note: We can do the same sort of pruning for lights, and we may
do other sorts of pruning based on distance, occlusion, etc.

Using the Framework
Gives yourself a sandbox to learn

81

‘Free Yourself to Experiment (1/4)

● At some point,
creating a ‘Scene’ or
‘App’ abstraction can
be handy

● Let’s break this down
just slightly

82

‘Free Yourself to Experiment (2/4)

● At some point,
creating a ‘Scene’ or
‘App’ abstraction can
be handy

● Let’s break this down
just slightly

83

Here’s the entry point into my
program -- very clean and simple

● Depending on your language,
you might wrap this in a
try/catch (when in ‘debug
mode’) to try to log errors.

‘Free Yourself to Experiment (3/4)

● At some point,
creating a ‘Scene’ or
‘App’ abstraction can
be handy

● Let’s break this down
just slightly

84

● This chunk of code is the
entirety of the graphics
application

○ Loading data
○ What to do every iteration

of the loop
● Now I can just ‘play’ and utilize

the rest of my framework
otherwise

‘Free Yourself to Experiment (4/4)

● Now I can just focus
on the interesting
parts

○ Writing shaders, and
the user code to get
things moving

85

The Compute Shader

86

Compute Shaders

● In regards to shaders, compute
shaders are a good place to
potentially move work for some
tasks

● We can again create a ‘Pipeline’
abstraction,

○ I choose to separate out Compute
pipelines from ‘Graphics pipelines’
(vertex + fragment)

■ Why? Because it’s not part of the
graphics pipeline

■ That said -- creating an interface
can further allow customization
of members (e.g. an SSBO for
storage and transfer of data
between pipeline stages)

87

GPU (Compute Shader) Frustum Culling

88

● So the next challenges may be to approach the same problem we
tackled (view frustum culling) but instead do it with a compute
shader on the GPU

○ Nice talk last year on GPU occlusion culling techniques
■ https://www.youtube.com/watch?v=gCPgpvF1rUA&list=PLLaly9x9rqjsXLW

1tMFruyh_657sh8epk&index=11&t=335s
○ There are a few more specific tutorials in the GPU Gem series on view frustum

culling
■ https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-compl

exity/chapter-2-terrain-rendering-using-gpu-based-geometry
○ The question to ask however, is how to ‘store’ data across pipelines?

■ For this, we can then learn about Shader Storage Buffer Objects

https://www.youtube.com/watch?v=gCPgpvF1rUA&list=PLLaly9x9rqjsXLW1tMFruyh_657sh8epk&index=11&t=335s
https://www.youtube.com/watch?v=gCPgpvF1rUA&list=PLLaly9x9rqjsXLW1tMFruyh_657sh8epk&index=11&t=335s
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry

Pipelining Pipelines (1/2)

89

● Hopefully some thoughts about
‘transferring’ data across shaders
are percolating

○ i.e. If I want to do GPU frustum culling,
how do I store objects?

■ What do I store? (e.g. position,
bounding box?)

■ Should I create a graph of my
pipelines to pass data around to
enforce order?

An Overview of the 'Diablo II: Resurrected' Renderer
https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Pipelining Pipelines (2/2)

90

● ‘Deferred rendering’ or ‘shadow
mapping’ tutorials are the next
good place to look

○ You will learn how to ‘compose’
information and store it for the next
stage of a pipeline

■ GPU storage ranges from ‘image’
and ‘texture’ data to more generic
storage like SSBO’s and UBO’s.

■ You can then otherwise effectively
think of each of your ‘Pipelines’
with a common SSBO (for
example) as a way to ‘piping data’
(Unix Style) along a fixed size
buffer per draw call or compute
shader dispatch

An Overview of the 'Diablo II: Resurrected' Renderer
https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo
(Slides)

https://www.gdcvault.com/play/1027558/An-Overview-of-the-Diablo

Your learning Future
How to learn more graphics

91

The Future (for you) (1/2)

92

● Earlier in this presentation I said:
○ “I still think (and hear from others as well) Modern OpenGL is a

good place to start your graphics journey”
● One of the tricks here is then to try to render lots of objects in

OpenGL
○ Simple as that

■ This will force you into problem solving mode:
● (e.g. Frustum culling that we looked at)
● What about instancing?
● What is multipass?
● How do I minimize state change, or reduce
● etc.

The Future (for you) (2/2)

93

● So what about what comes after -- when you want to learn the
other modern APIs that reflect what GPU does?

○ I can recommend SDL_GPU
■ It is an abstraction layer on top of Vulkan, D3D12, and Metal -- likely similar

to what you’d build yourself
● Still forces you to program however in the way you would with these

APIs, but with a bit less boilerplate
○ If you’re here at GPC, you likely are motivated to just dive in

■ You otherwise could spend some time in something like
https://vulkan-tutorial.com/

● Porting a previous project (or learnopengl.com tutorial) over may be a
good way to guide yourself so you can focus on learning the API and
reduce cognitive overhead.

https://wiki.libsdl.org/SDL3/CategoryGPU
https://vulkan-tutorial.com/

Frame Breakdowns

● There are various frame
breakdowns that you can
investigate and may be helpful

● However -- if you still find those
overwhelming, reading source
code of hobby engines (smaller
in size) can be very valuable.

○ I’ve liked reading the Horde3D
engine (a bit older), OGRE3D,
Wicked3D to get ideas about
abstractions.

94

https://www.adriancourreges.com/blog/2020/12/29/graphics-studies-compilation/

https://www.adriancourreges.com/blog/2020/12/29/graphics-studies-compilation/

GPU Debuggers

● GPU Debuggers can themselves be very handy for
navigating a scene

○ Using a free one like Renderdoc to navigate the events may
help you put together the ‘frame’ in an easy way

○ i.e. You can download a tutorial (or run an actual game) and
navigate step by step a frame captured

■ Renderdoc: https://renderdoc.org/
○ Similar debuggers like Pix for D3D exist:

■ https://devblogs.microsoft.com/pix/gpu-captures/

95

https://renderdoc.org/
https://devblogs.microsoft.com/pix/gpu-captures/

Rapid Prototyping

96

● If you want to just play around with
visuals, it may be useful to use
rapid prototyping node-based
shader tools or engines to
experiment, learn different effects,
etc.

● Look at tools such as:
○ Gigi
○ Shadertoy

● Gigi: A Platform for Rapid Graphics
Development and Code Generation

○ https://www.youtube.com/watch?v=MgCR
-Kky628 GPC 2024

○ https://www.ea.com/seed/news/gigi

https://www.youtube.com/watch?v=MgCR-Kky628
https://www.youtube.com/watch?v=MgCR-Kky628
https://www.ea.com/seed/news/gigi

Resources

97

● My recommendation would be to take some
inspiration from the resources below -- there’s
often useful graphics knowledge found

○ But I think the ‘build up’ and seeing how each person slowly
tackles and iterates on a more complicated effect is the real
value

● Some Inspiration on YouTube
○ Sebastian Lague

■ https://www.youtube.com/@SebastianLague/videos
○ Acerola

■ https://www.youtube.com/@Acerola_t/videos
○ Jasper: https://www.youtube.com/@JasperRLZ

■ https://www.youtube.com/watch?v=By7qcgaqGI4 The
Glitch that Broke Link's Cel Shading

https://www.youtube.com/@SebastianLague/videos
https://www.youtube.com/@Acerola_t/videos
https://www.youtube.com/@JasperRLZ
https://www.youtube.com/watch?v=By7qcgaqGI4

Summary

98

● Today I’ve spent a bit of time talking about (hopefully) some useful
topics on engineering a graphics framework

● Hopefully this will accelerate a bit how you see these pieces fit
together, and give you some ideas of building a framework to
accelerate your learning

● The next step is to start getting inspired, try recreating effects you
see in games, and playing around in your graphics framework
sandbox.

After the Tutorial: Where to Continue
your Graphics Programming Journey

999999

Web: mshah.io
 www.youtube.com/c/MikeShah

Social: mikeshah.bsky.social
Courses: courses.mshah.io 60 minutes | Audience: Beginner
Talks: http://tinyurl.com/mike-talks 13:30pm - 14:30pm Thur, Nov. 20, 2025

Thank you Graphics
Programming Conference for

having me!

https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
https://graphicsprogrammingconference.com/2025#after-the-tutorial-where-to-continue-your-graphics-programming-journey
http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Thank you!

100

