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e What is Cycles?
e Difference from real-time engines
e Architecture
e Overview
e Render scheduling
e Kernel
e Unified kernel for all GPGPU backends
e Megakernel vs. wavefront render
e Kernel scheduling
e Deeper dive
e Shading Virtual Machine
e Texture filtering

e |nteractive viewport

o QRA
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Introduction
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What is Cycles?

e Physically-based path tracer for production rendering

e Developed by the Blender project under the Apache 2 license
e Render engine that is interactive and easy to use

e Supports many production features

e Uses physically based shading system

e Design goals include handling large amount of geometry and complex shading
and lighting scenarios
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Cycles features

e Unified rendering kernel for CPU and GPU (AMD, Apple, Intel, Nvidia)

e Cross platform and multi-device support (even heterogenous)

e Compositing (render layers and passes, shadow catcher, etc.)

e Denoising, adaptive subdivision, camera lens models

e Shading: node-based, OpenBPR compatible (mostly), OpenShadingLanguage (OSL)

e Light: global illumination, light portals, light and shadow linking, manifold next event
estimation (MNEE), path guiding

e Many morel!
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Difference from real-time engines

e Path tracing render engine
e [akes long time to converge, but allows for complex light interactions
o Implements full global illumination

e Shading Virtual Machine (SVM)
e Byte-code machine which interprets shader node graph

e Kernelis written in C++

e Matched features set on CPU GPU, and GPU+HWRT
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Architecture overview
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Architecture overview

Kernel

Device side rendering
algorithms

BVH Device

Ray-tracing acceleration CPU and GPU device
structure abstraction

Scene Integrator

Scene graph with geometry, Host-side rendering
shaders, light algorithms

Session
Rrender scheduling

Host Application
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Architecture overview

Host application adapter

Kernel

Device side rendering
algorithms

P s

e [akes care of converting data from DCC to Cycles

Kl N KN B N

e |ts responsibility only synchronize changes from B e
the hOSt apphcat'On Ray-tracing acceleration CPU and GPU device

structure abstraction

e Adapter from Blender is maintained by the \/\

. Scene Integrator
FO U n d at | O n Scene graph with geometry,

Host-side rendering
shaders, light algorithms

Session
Rrender scheduling

e There are external integrations (Rhino3D, Cinema
4D, etc.)

e Debugging tool: XML reader for Cycles standalone
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Architecture overview

Session

Kernel

Device side rendering
algorithms

P s

e Root object created by the host application

Kl N KN B N

BVH Device
Ray-tracing acceleration CPU and GPU device

e Device abstraction object sbstracton

Scene Integrator

Scene graph with geometry, Host-side rendering
shaders, light algorithms

e Owns all data needed for rendering

e Display and write drivers

e Scene graph

e Render buffer

e Render scheduling
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Architecture overview

Integrator

Kernel

Device side rendering
algorithms

P s

e Host-side algorithms for path tracing

integrator m

Device

e Dynamically schedules and invokes kernels, B | Device
° ° ° ay-tracing acceleration an evice
m a | n 't a | n | n g structure abstraction

Scene Integrator
Scene graph with geometry, Host-side rendering
shaders, light algorithms

Session
Rrender scheduling

BVH

e Balances work between multiple devices

e Integrates with denoising and adaptive
sampling algorithms

e Provides accessors to passes in render buffers

Host Application
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Architecture overview

Scene
Kernel
Device sldg rendering
algorithms
Render scene data, stored as of a e T
m
Eve ryt h i n g iS a n O d e: Ray-tracint\g:celeratlon CPU au?de ;li::Jedevice

structure abstraction

\

Scene Integrator
Scene araph with geometry. Host-side rendering
algorithms

Session
Rrender scheduling

e Scene itself is a node

o Geometry

e Integrator, film settings, etc.

Shading graphs
. g grap
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Architecture overview
Bounding Volume Hierarchy (BVH)

Kernel

Device side rendering
algorithms

P s

e BVH Is a ray-tracing optimization tree structure

Kl N KN B N

e Cycles supports multiple acceleration structures

Device

CPU and GPU device
abstraction

/

o HIP RT for hardware ray-tracing on AMD GPUs Scene iegmmtor

Scene graph with geometry, Host-side rendering
shaders, light algorithms

Session
Rrender scheduling

e Embree for CPUs and Intel GPUs B

e OptiX BVH for hardware ray-tracing on NVIDIA GPUs \

e Metal RT BVH for hardware ray tracing on macOS
e Custom BVHZ implementation for everything else

e Viewport updates use BVH refitting to keep up

interactivity
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Architecture overview

Device

Kernel

Device side rendering
algorithms

P s

An abstraction of compute backend to allow

render algorithms manipulate memory and KN kTS W N

call functions (invoke kernels).

——— ——,

BVH Device
Ray-tracing acceleration cPU :1?_1_51;‘_&] @-;;-_,_,:-,I device
structure

Scene Integrator

Supports a variety of backends

@ Scene graph with geometry, Host-side rendering
. CUDA, OptiX, HIP, HIP RT, oneAPI, e
o GPU+GPU or CPU+GPU

Host Application
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Render scheduling

Main steps

e Allocate and clear render buffers
e Render loop:
e Render a number of samples on devices
e Rebalance work between devices
e Adaptive sampling error redistribution and stopping
e Render buffer postprocessing
e Denoising

e Display texture update
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Kernel

Language overview

e Single kernel source compiled for all backends

e T[here is backend specific logic for hardware raytracing and texture sampling
e Different entry points for CPU and GPU backends

e Entry points are tiny wrappers

e All GPU backends use the same code for entry points
Exception: hardware raytracing
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Kernel

Language overview

The code uses a subset of C++1/7, CUDA, and HIP:

e Need to be careful to only use language features that are supported for all
targets

e Preprocessor macros are used to smooth over the language differences
For example address space qualifiers : , etc.

e No recursive functions, function pointer, dynamic memory allocation, no doubles

e Some utility functions needed to be re-implemented

7 Graphics Programming Conference, November 18-20, Breda L 25




Kernel
Vector types

e The vector types are the same as CUDA: : :
Similar for inf, :
e Operators like add, multiply, etc. work as expected

e Construction is a bit different: function is used:

float3 v = make float3( : : );

e Necessary classes and operator overloads are implemented to support all
platforms
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Kernel

Constant memory and textures

e Small, fixed size data is stored in constant memory.
contains all constant memory, and is available as a

global variable everywhere

o All large read-only data is stored in a small number of arrays in global memory,
and texture handles for image textures

For historical reasons this is still called "textures” as old GPU architectures had to
use texture memory for good performance
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Kernel
CPU SIMD optimization

e Math utilities heavily utilizes SIMD intrinsics
e [hereis a fallback "naive" scalar implementation
e Mainly utilizes : : ~and Intrinsics
o support heavily relies on
e sseZneon is pretty good, but sometimes has undesirable overhead
e Such cases are identified on case-by-case basis, and native ARM64 Neon

Intrinsics are used
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Kernel

Megakernel

e Megakernels compute a light path from start to end

Spectrum trace_path(int image_x, int image_y, int max_bounce)
{
® Simple .to implement Ray ray = generate_ray(image_x, image_y);
Spectrum result = OF
for (int bounce = 0; bounce < max_bounce; bounce++) {
. . - t Hit hit = _int t(ray);
e Not efficient on GPU for a production renderer oo 1
break;
® ® }
e [urns out to be the most efficient on the CPU result += evalvate_emission(hit);
result evaluate_surface(hit);

ray = surface_bounce(ray, hit);

o At least without using wide SIMD for shading }

return result;

e Or until ray packs are used
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Kernel

Megakernel

Cycles implements megakernel approach on CPU

void integrator_megakernel() A
while (has_scheduled_kernels()) {

integrator_intersect_shadow();
integrator_shade_shadow();

integrator_intersect_closest();
integrator_shade_background();

} Disclaimer: the code is simplified for the demonstration purposes :)
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Kernel
CPU scheduling

e CPU rendering traces a light path from
start to end in each thread

tbb::task_arena local_arena = tbb::task_arena(num_cpu_threads);

local_arena.execute( f: [&] {

parallel_for( inté4_t(0), num_pixels,
e Multi-threading uses a simple parallel for emetortite vork tiven
loop over all pixels and samples to be e e e A
work_tile.x = work_index - work_tile.y * 1mage_width;
rendered
for (int sample = 0; sample < num_samples; sample++) {
. . . . integrator_megakernel(kernel_globals, state, render_buffer);
e A single megakernel calls the individual }
microkernels as needed, sharing code P

with the GPU implementation
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Kernel

Wavefront

o Cycles uses wavefront path tracing on the GPU:
e Megakernels Considered Harmful: Wavefront Path Tracing on GPUs
e The lray Light Transport Simulation and Rendering System

e [he problem it solves: threads coherency

e [he idea is that there are individual kernels for each task: scene intersect,
surface shading, etc.
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Kernel
Scheduling graph

Init From Intersect
Camera Dedicated Light

Volume Stack ' Intersect ’ Shade _’ Intersect
Closest 4— Surface e Subsurface

Init

Shade ‘ Shade ' Intersect
Shadow

Background Volume
Shade
Surface
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Kernel

Wavefront integrator state

e [he state of each path is stored in an
e [his state contains all information for the following kernels to compute the rest of the path
e Memory is reserved for millions such integrator states

e Each integrator state can be active or inactive. If it is active, it stores the next kernel to be
executed

e Macros are used to abstract state access:

const float min_ray_pdf = (state, , ))
(state, : ) = fminf(ungquided_bsdf_pdf, min_ray_pdf);
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Kernel

Structure of arrays

e On the GPU, structure-of-arrays storage is used

o Generally for more efficient memory access patterns

e [here are exceptions when using array-of-structures is preferred
e For example, ray intersection data which needs to be fully read by every kernel
e Structure-of-Arrays-of-Structures :)

e [he state Is code-generated using macros
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Kernel
Scheduling

Mark all paths as 1nactive

While any work tiles remain to be rendered:
If fewer than half of paths are active:
Get next tiles to be rendered
Gather array of 1nactive path indices

Execute init_from_camera kernel to activate 1lnactive paths
Find the kernel that most active paths need to execute next

Gather array of active path 1ndices with this kernel

Execute Kkernel
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Kernel

Logistics

o \We prefer to bundle pre-compiled kernel binaries
e \We ship CUDA, HIP, HIP-RT, oneAPI kernel binaries
o OptiX kernel is shipped as PTX: requires one-time client-side optimization
o Metal is always JIT :(

e [0 minimize the distribution size the binaries are compressed using ZSTD
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Kernel
Supporting more GPUs

e \We are working with hardware vendors to expand the GPU support

e \We are pushing towards SYCL and oneAPI via DPC++
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Shading
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Shading

¢ [wo shading systems:
e Cycles' Shader Virtual Machine (SVM), supported on all compute backends
e OpenShadingLanguage (OSL), supported on CPU and OptiX
e Cycles uses shader network preprocessing
e Unused nodes and dead branch removal
e Constant folding

e Node de-duplication
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Shader Virtual Machine (SVM)

e Interactivity is the key principle of Cycles
e Specialized shaders could take a while to compile

e Instead, Cycles compiles shader trees to a special byte-code which is then
Interpreted in the shading kernel

e No need to have a compiler! (SDK, LLVM JIT, etc.)
e This byte-code of the SVM is represented as data

e [he interpreter is the same for all shaders
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Shader Virtual Machine (SVM)

e Shader graphs are compiled by Cycles into an array of

e Nodes are compiled into one or multiple

o The first contains opcode, and could hold 3 parameters
e Extra could be added to the SVM if node needs more data
e Thereisa from which node can read data, or to which node can write data

e The SVM in shading kernel interprets the array sequentially

e Essentially, one big switch statement in a loop

~, Graphics Programming Conference, November 18-20, Breda




Shading

SVM Compilation

b il vV Diffuse BSDF
Color .\
G @® Color
la’]lv My texture O E X s
Linear o el
N/
Flat < Fresnel
Repeat 9 Fac @
Generated 9y ® IOR 1.500
Normal
Color Space sRGB v
Vector
Bytecode
Stack
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Vv Material Output
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® Volume
Displacement

® Thickness




Shading

SVM Compilation

@blendeﬁ

e Start with the Material Output — e T e o .
Alpha 0\. Col ® Surface
. Alv My text UG = X ® Roughness ® V?lume
. erte byte_COde: Linear — l / Normal I i):]sipc)ll(anc;r:ent
* Opcode — s
e Surface shader address: O
e \Volume shader address: O
e Displacement shader address: O wlv
Bytecode [NENENEN
e Offsets are not yet known
Stack
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Shading

SVM Compilation

® VeCtOI’ inpUt Of the TeXture NOde il = .\ \ Diffuse BSDF . .\ VA:/'ateriaIOUtput
o5 0 . la’]lv My texture Ol mE X @ Rzuc;rhness ® Volume
e Implicitly created as texture coordinate node . / ¢ e
e Assign stack offset O Gererted o o
e [hisis where the result is written to
e \Write byte-code:
e Opcode:
. Bytecode NN
o Attribute type:
v
Stack
e Output stack offset: O ack [ININEN
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Shading

SVM Compilation

I T t N d v My texture v Diffuse BSDF \ Material Output
o mage exture ode Color ® BSDF @ \ All
Alpha 0\. Color ® Surface
. la’]lv My texture O @ X ® Roughness ® Volume
® ASSIg n StaCk Oﬁset 3 Linear v Normal Displacemen t
Flat 0 V Fresne L ® Thickness
Repeat Fac @
o . @] IOR 1.500
® erte byte_COde. ke = Normal
Color Spac RGB
Vect

e Opcode:
e Coordinate stack offset: O

e |mage siof: 0

e Output stack address: 3

R 4
e Other parameters like filtering stack [N
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Shading

SVM Compilation

Vv Material Output

° FI’ esn el I O R ~ My texture Vv Diffuse BSDF

Color .\ S .\ - :
Alpha @ ® Color ® Surface

]y My texture UL X ® Roughness ® Volume
. ASSign StaCk Oﬁset 7 Linear v Normal Dis'placement
Flat o V Fresnel ® Thickness
Repeat v Fac ®
W 5 b d . Generated v * = _ool
. ”te yte_CO e. Normal

Color Space sRGB

Vector

e Opcode:

e Output stack offset: /

Bytecode [N ENNNENNNEEEN

v
stack [HINNNNNN
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Shading

SVM Compilation

Vv My texture v Diffuse BSDF Vv Material Output
e Fresnel Normal o] el v
- .\. Color \ ® Surface
A~ My texture O m X ® Roughness ® Volume
® ASSIgn StaCk Oﬁset 8 Linear v Normal Dis.placement
Flat o v Fresnel @® Thickness
Repeat v Fac ®
W - b d . Generated v o= _ool
. rlte yte_CO e. Normal

Color Space sRGB

Vector

e Opcode:

e Output stack offset: 8

Bytecode [N NNNTENNNENEN

d
Stack [HINNNNEN=E
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Shading

SVM Compilation

Vv My texture v Diffuse BSDF Vv Material Output
. Fresnel NOde Color @ BSDF @ All
Alpha O\. Color \. Surface
]y My texture O m X ® Roughness ® Volume
e Assign stack offset 11 : oupcamen
Flat o v Fresne ! @® Thickness
Repeat v Fac @
W '-t b -t d . Generated v o= e
® rl e y e_CO e. s e Normal
Vect

e Opcode:
e |OR read offset: 3

e Normal read offset: 4

Bytecode NN NNNNNEEEN "
® Output stack offset: 11 ""':::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::‘......=

Stack IIIIIIIIIIII
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Shading

SVM Compilation

Vv Material Output

. Vv My texture vV Diffuse BSDF
. Dlﬁuse BSDF Normal Color @ BSDF @ All v
Alpha .\. Color \ ® Surface

]y My texture UL X ® Roughness ® Volume
e Re-used normal from the Fresnel node evaluation | / pEmEEE

Color Space sRGB

Vector

Bytecode [N ENNNENNEEEEN

stack [NNNENEENNNN
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Shading

SVM Compilation

D.ﬁ BS D F N d il V Diffuse BSDF Vv Material Output
Gk @® Color ® Surface
- : . Normal Displacement
o \Write byte-code: : '
Flat o v Fresnel @® Thickness
Repeat 9 Fac @
Generated e ® IOR 1.500
[ )
e Opcode:
Color Space sRGB v

Vector

e Closure: Diffuse

e Colorread offset: 3

e Normal read offset: 8

Bytecodte |1 N N N HENEN
o Roughness read offset: 11 T

stack. [ NI
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Shader Virtual Machine (SVM)

Benefit:
e Minimal time until the

e Non-blocking interactive shader network edits

Downsides:
o Stresses GPU compilers A LOT
e Performance is lower than a dedicated shader

e Limited and fixed stack size
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Shader Virtual Machine (SVM)

Future ideas

e Can SVM approach help interactivity of EEVEE?

e Will the same approach be used in Cycles for MaterialX?
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Texture filtering
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Texture filtering

Hardware filtering

e \Whenever is possible hardware texture filtering is used
¢ No hardware support on CPU
e Compute backends provide accelerated linear texture sampling
e Bicubic filtering on GPU is implemented using 4 bilinear lookups
e Adds a requirement to texture tiles to be padded
e Note: the texture cache project is currently in a branch

e \/olumes are handled via NanoVDB
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Texture filtering

Stochastic filtering after shading

e Based on:

Filtering After Shading With Stochastic Texture Filtering
Matt Pharr, Bartlomiej] Wronski, Marco Salvi, Marcos Fajardo

e Basic idea: utilize the Monte-Carlo integration and replace filter with a cheaper one:
e Bilinear lookup can be replaced with nearest lookup
e Bicubic lookup can be replaced with bilinear/nearest lookup
e Applicable on CPU and GPU, for 2D and 3D textures, but only implemented for 3D textures

e Only possible if shader only does linear operations with sampled texture value
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Interactive viewport
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Interactive viewport

General tricks

° BVH

e Progressive resolution divider

e Denoising, on GPU when possible

e Currently looking into temporal denoising and upscaling

e Possible future development: limit the number of bounces during navigation
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Interactive viewport

Statistics driven scheduling

e Cycles gather statistics
e Path tracing and denoising time
e GPU occupancy (threads utilization)
e Automatically calculates
e Resolution divider used during updates
e [he number of samples to render between viewport updates

e Tries to maintain a decent refresh rate (currently 12fps)
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Thank you!
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