/71

Bridging Pixels & Code

-- Teaching Computer Graphics to Technical Artists --

) Graphics Programming Conference, November 18-20, Breda

112 F

Whoaml?

Matthieu Delaere

* DAE Howestand BUAS MGT alumnus
 Senior Lecturer (C++ Graphics Programming) @ DAE Howest
* Senior Research Engineer @ Weta FX

* Previously Rendering Researcher @ Unity

w

i1 T

SHLY IN CINEMAS BOXING DAY

) Graphics Programming Conference, November 18-20, Breda

ACTI
Seeing Beyond the Pixels

) Graphics Programming Conference, November 18-20, Breda

/14

Boundless Creation

* When we look at this, we see art. But behind every pixel, there is
a sequence of instructions, data transformations, performance
considerations, and much more.

« For most students early in their (educational) career, these are
often invisible and considered not high priority, even though
they are crucial for game development!

* Most students concentrate on perfecting their craft rather than
focusing on the product and overarching structure.

e This often resultedin:

« artists not being able to spot bottlenecks, optimize their
scenes and explaining why art was made in the was it
was.

* programmers not being able to discuss more advanced
concepts or produce proper alternatives based on
constraints.

https://vimeo.com/1065465468?fl=pl&fe=vl

N, Graphics Programming Conference, November 18-20, Breda

https://vimeo.com/1065465468?fl=pl&fe=vl

/75

Boundless Creation

Memory Allocation Warning

A resolution of 4096 will require 1 GiB of video memory PER reflection capture component. Are you sure?

Override Parameters

Niagara Data Interfac

Houqhmsss—m 1

frem TM (Defnct)

- Niagara Data Interface P!
Niagara Data Interface Rigid

Tag collider

Only Moveable

Max Num Primiti 100

DirectionalLight1 Niagara Data Interface UObject Property

DirectionalLi Niagara Data ace UObject Property

https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine

https://forums.unrealengine.com/t/material-optimization/59111/6

9 Graphics Programming Conference, November 18-20, Breda

https://forums.unrealengine.com/t/material-optimization/59111/6
https://forums.unrealengine.com/t/material-optimization/59111/6
https://forums.unrealengine.com/t/material-optimization/59111/6
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine

/76

Boundless Creation

« The prominent effects are freezing when encountering “real” problems, hitting a skill ceiling, not speaking
the technical language, lots of retraining needed, etc.

 How did we get there, so what does not work:

passive tutorial consumption - memorizing or copyingis not understanding!

theory without implementation - reading about swimming does not teach you swimming!
tool-dependent knowledge - you learned where buttons are, not what buttons do!
APl learning without foundation > APIs abstract away important mechanisms!

isolated skill development - games depend on bridging art and technology. Learning each side separately does
not build a bridge!

learning in siloed comfort zones - growth happens at the edge of capability and not in the comfort zone!

* Many traditional approaches focus on results... We have “optimized” for completion over understanding!

« Finishing a tutorial feels like progress, while often you are just following steps without deep understanding.

« Real learning is messy, frustrating and slow, but it works!

) Graphics Programming Conference, November 18-20, Breda

ndless Creation

1l1,| Frames ® Timing Timers E m Callers IE Callees V\ Counters E Log

SpAllTracks ~ T=CPU/GPU v T Other v S Plugins v > View Mode v

| | | | | |
37s 15.40755s 15.40772s 15.40789s 15.40807s 15.40824s 15.40842s 15.40859s 15.40876s

Core 0 |5al RenderThread 0 (528.5 ps) RHlInterruptThread (

e |Backgro - | Background Worker #7 (4125ps) [Background Worker 87 (436.6

Core 2 B [Bac| Background Worker #9 (891.8 ps)

Core 3 | [Backgra! CELTD GG E] RenderThread 0 (3.4 ms)

Core 4 GameThread (866 ps)

Core 5 Backg B |Background Worker #3 (415.6 ps) Ba | Backg
Core 6 |Background | Ga

==l | [Background Worker #4 (375.2ps) | [l For
Core & Backgrou Background Worker #5 (349.7 ys)
Wik erruptThread (601.1 ps) Ba| Background Worker #1 (910.5 ps)

Core 10 Ba |:1) Background Worker £2 (542.5 ps)

ore 11 S [] [
Core 12 | Ba ‘Background Worker #10 (508.4 ps) ca [
Core 13 Foreground Worker #0 (1.4 ms)

Core 14 Backs [RHITI
Core 15

Foreground W| |Backgroun| Foreground Worker #1 (273.8 1 Backgroun
GameThread c

EngineLoop: Tick (22.4 ms) [IFEnGineloop: Tk (226 me) . | |
frameTime (224ms) FrameTime (22.5 ms) I N
OO 0[] GameEngineTick @3ms) |
sameThreadWaitForTask (16, [Blll |] [GHaTick EEms)
[311 | [World Tick Time (3.3 ms)
II Tick Time (2.6 ms)
[
| ReleaseTickGroup Block (465.1 |.|s] i Hslsa FeleeeT
Tlckl_ompletmnEvem" (464.
mlil
Ex_ExecuteTask (1 Execute
[Ni[Lyr = F]
EI e

Overdraw

) Graphics Programming Conference, November 18-20, Breda

https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html

/78

Boundless Creation

« The obvious solutionis to subject yourself to productive struggle!

It doesn't work...... why?

* Attempt something slight beyond your current capabilities.
* Failatit. Thisis required and not optional!

* Debug, investigate and understand why you failed.

» Succeed through understanding!

« The"framework”is simple: Build > Analyze - Explain

 Build - implement something from scratch. It forces to fill knowledge gaps
immediately.

* Analyze - break it deliberately, debug it and understand why it works or does not
work.

« Explain - teach it to someone else (the community is your friend) via blogpost,
video, presentation, etc. You cannot bullsh*t when teaching.

MemeBlender.com <<<<c<cc<ccccccccccccccccccs
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d

) Graphics Programming Conference, November 18-20, Breda

https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d

ACT I
Making the Invisible Visible

) Graphics Programming Conference, November 18-20, Breda

/710

What's in the Box?!

« Forboth programmers and artists, build a software rasterizer using your preferred language (C++, Python, etc.).

* Remove all APIs and boilerplate. Focus on “raw pixels”, memory and mathematics! In other words, remove the black
box and gradually learn core concepts. You cannot fully understand what you have not built.

* The key concept is that you reinvent the pipeline from scratch, not because we need a new renderer but because
deep understanding requires reconstruction!

) Graphics Programming Conference, November 18-20, Breda

m

What's in the Box?!

+ Removingall unnecessary overhead (GPU and engine architecture, synchronization, etc.) allows for very focused
examples and easy-to-showcase-and-test concepts or problems.

* What this achieves is:
« DataLiteracy - you learn how vertex data gets transformed throughout the pipeline and how it affects pixels.
« Conceptual Insight - you learn why GPU stages exist without explicitly referencing the GPU just yet.
+ Performance Intuition - you learn the impact of decisions(small triangles, data and lighting complexity, etc.).

« This approach does have challenges:
* Accessibility Barrier - a full coding assignment might still be too intimidating.
* Visualization Difficulty > some concepts are not always easy to visualize out-of-the-box.

* Assumed Understanding Risk - small conceptual gaps cannot be overlooked. Assuming you will get it later is
dangerous.

* How to potentially deal with these challenges?

) Graphics Programming Conference, November 18-20, Breda

17112

What's in the Box?!

* While it might be counter intuitive at times, mix the visual coding part (writing a rasterizer) with standalone console applications or
standalone demos using external tools, either static or with animated examples. The journey, not the result, matters!

+ This lowers the accessibility barrier (contained examples), allows for tailored visual learning (e.g. using external tools the artist
knows)and makes sure there are clear milestones for testing assumptions and understanding.

« Continuously use the lens of being a teacher. You deepen your understanding by teaching what you learn to others.

* BUILD - ANALYZE - TEACH

& Microsoft Visual Studio Debus X

Byte size of Handle i
Size of VertexPositiol
Pool Allocator - m
-base ptr:
—alignment
-is aligned: 1
—element size: 16
-per element padding: 16
—count: 2
-total size: 64
Invalid or outdated handle deallocation ignored.

Exercise 2A Exercise 2B

https://www.sidefx.com/docs/houdini/ref/panes/geosheet.html

) Graphics Programming Conference, November 18-20, Breda

https://www.sidefx.com/docs/houdini/ref/panes/geosheet.html

/713

What's in the Box?!

* When implementing and testing features, follow the data and profile early on to understand the impact of decisions
both in code and data. Playing around with different setups will help with your comprehension.

768 Triangles
418 Vertices

Sharp Edge Soft Edge .

e e . 768 Triangles
verts split/increased verts not split/reduced e

https://www.artstation.com/blogs/ericcorreia/2AMQI

M Fan

100 B strip

H Max area
N] | 1 1 1 1 7
o T T T T T T T T T T 1
B
B
A
\’L

T . Y - T e T
wooef gk @t g7 o7 ab W
R A

https://www.humus.name/index.php?page=News&|D=228

) Graphics Programming Conference, November 18-20, Breda

https://www.artstation.com/blogs/ericcorreia/2AMQl
https://www.humus.name/index.php?page=News&ID=228

/114

What's in the Box?!

e Focusonthe following concepts:

.Etmcr Vertex // Data per vertex struct Fragment // Data per fragment
+ Data flow and data transformation. Vector3 position; Vectors .
Vector3 normal; ector3 normal;
* Why is the position of a fragment a vec4, and in which space is each Vector3 color; vector3 color;

Vector? texture_coordinates; Vector2 texture_coordinates;

component?
* How to perform correct depth interpolation of attributes?
* Why the depth bufferis not linear?
« What are the different ways to sample a texture (related to filtering)?

« How can your datainfluence the renderer (vertex attributes and count,
texture resolutions and compression, etc.)?

* Evenasan artist, learn the different types of memory and their
properties (cache memory, bandwidth, etc.). .

* What datais needed for per-pixel lighting, and which data can be shared ¥ "=
among piXG|S? vertices transformed triangle rasterized shaded
« Focus on “input->function->output” as this will help you later! ol L Ll

https://mini.gmshaders.com/p/vertex

» Before continuing, make sure your thoroughly understand why things work and how you have influence over it!
You do not need the best implementation, but you need to be able to “connect the dots”.

* For mathematics or CS topics, learn Just-In-Time and not Just-In-Case!

) Graphics Programming Conference, November 18-20, Breda

https://mini.gmshaders.com/p/vertex

ACT I
The Machine Scales Up

) Graphics Programming Conference, November 18-20, Breda

/716

The same, but faster!

* Once youunderstand how pixels are “born”, you can scale up and see how GPUs actually make things faster through

Vertex/index buffer

parallelization. o
Input assembler A
+ Start with a simple APl such as OpenGL or DirectX11. Key here is to map your learnings to this predefined graphics pipeline. l —
* Revisit your CPU-based rasterizer while doing this. When learning a simple API, the focus should be to learn the API, not Vertex shader 1<L
core concepts. If you feel somethingis missing, go back to your rasterizer as it should be the easier environment to test l
things. Make sure there is a clear distinction between their purposes. Tecsalation éﬂi
5
* At this point, while learning the API, there are two new things you should focus on as well: l
 Learn shader coding(link this to the “input->function->output” of per-pixel lighting). It is a new language but make Soomainyshaues 1%27
sure to understand the architecture and do not loose yourself in making fancy shaders from the get-go. l
. . I Ening
Learn about the GPU architecture! . i m
Fragment shader gzm

i SesegaiEd

Color blending

i

Framebuffer

https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction

) Graphics Programming Conference, November 18-20, Breda

https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction

17117

The same, but faster!

* Do not be intimidated by the GPU. There are great visual resources out there such as Render Hell by
Simon Schreibt. These are equally valuable for artists and programmers!

* Once youunderstand what the GPU is doing on a high level, you realize that every artistic choice affects
performance but also image quality.

* For shader programming, use existing frameworks or engines as the sandbox, though be careful and
initially avoid purely node-based systems.

* During this stage of learning avoid:
« wrapping or hiding all API specific code. The purpose is not to write an agnostic renderer!
 writing a full-fledged (production) game engine.

* Instead, realize the focusis on understanding:
* agraphics APl is just an extra indirection to communicate with the GPU.
« that usinga graphics APl is all about data and state management.
* that this management requires data transfer.

https://simonschreibt.de/gat/renderhell/

) Graphics Programming Conference, November 18-20, Breda

https://simonschreibt.de/gat/renderhell/

/718

The same, but faster!

* Once the core concepts of OpenGL or DirectX 11 are well understood, one can switch to
modern APIs such as Vulkan and DirectX 12. [optional for art-focused students]

« While these can be intimidating at first(again), there are only a “few” key differences,
which if you understand these, you will understand it is not that hard:
» synchronization is explicit and must be handled with care.
* resource managementis more verbose which allows for more control.
+ state tracking and setup is more explicit and sometimes cumbersome.

* When learning another new API, one must separate the new concepts from the APl again!

« Some insights for learning Vulkan:

* Avoid the graphics pipeline when learning about synchronization and resources.
Instead use the compute pipeline (another new topic you can explore with OpenGL
first).

* Do not skip on synchronization details! Take your time to understand execution and
memory barriers, and the related stage and access masks, thoroughly.

* Avoidrender passes and use dynamic rendering first!

* Always question why you do something when using tutorials! Some things are wrong
or not best practices (best practices lists do not help you in the beginning).

) Graphics Programming Conference, November 18-20, Breda

ACTIV
Bridging The Gap

) Graphics Programming Conference, November 18-20, Breda

/120

Be your bridge keeper!

* While learning modern APIs are optional for artists, knowing computer graphics and the GPU are not!

* When using existing engines, be the bridge keeper and ask yourself questions. When you do not understand a term or
parameter, use the documentation and go down the rabbit hole until you understand the implications.

https://montypython.fandom.com/wiki/Bridge_of_Death https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/

. Graphics Programming Conference, November 18-20, Breda

https://montypython.fandom.com/wiki/Bridge_of_Death
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/

/121

Be your bridge keeper!

* While learning modern APIs are optional for artists, knowing computer graphics and the GPU are not!

* When using existing engines, be the bridge keeper and ask yourself questions. When you do not understand a term or
parameter, use the documentation and go down the rabbit hole until you understand the implications.

* Overall takeaways:

Start from core principles and not APIs or engines - don't rush into engine features or graphics APIs and
instead understand what the pipeline does. Understanding beats memorizing!

Find the origin - learning why techniques evolved to what they are now will give you a deeper understanding,
and a bigger toolbox to make informed decisions.

Build something small to see how it works - this can be a software rasterizer, but also a simple memory
allocator, texture loader, toy shader, etc.

Think in terms of data flow and cost > every vertex, texture, draw call, and more has a cost. Learn to trace
how data moves and where time is spent. Understand that performance is the natural consequence of
understanding flow.

Stay curious = understanding grows by tinkering and doing things. When you find something new, take time
to understand it.

Stay interactive - while framerate and performance is important, test your art and code in motion!
Learn from artists/programmers - always learn from your “counterpart”! Take an additional class if needed.

) Graphics Programming Conference, November 18-20, Breda

1122

The strongest bridges are built on deep foundations.
Not by learning every feature but by understanding the core principles that make everything else make sense.

The concepts that intimidate you are the ones worth learning. Just take it one step at a time.

Every expert was once a beginner who refused to give up!

ONE DOES NOT SIMPLY
N\

S

BECOME AN EXPERT

) Graphics Programming Conference, November 18-20, Breda

/123

Thank You!

matthieu.delaere@howest.be

) Graphics Programming Conference, November 18-20, Breda

mailto:matthieu.delaere@howest.be

	Folie 1: Bridging Pixels & Code -- Teaching Computer Graphics to Technical Artists --
	Folie 2: Who am I?
	Folie 3: ACT I Seeing Beyond the Pixels
	Folie 4: Boundless Creation
	Folie 5: Boundless Creation
	Folie 6: Boundless Creation
	Folie 7: Boundless Creation
	Folie 8: Boundless Creation
	Folie 9: ACT II Making the Invisible Visible
	Folie 10: What’s in the Box?!
	Folie 11: What’s in the Box?!
	Folie 12: What’s in the Box?!
	Folie 13: What’s in the Box?!
	Folie 14: What’s in the Box?!
	Folie 15: ACT III The Machine Scales Up
	Folie 16: The same, but faster!
	Folie 17: The same, but faster!
	Folie 18: The same, but faster!
	Folie 19: ACT IV Bridging The Gap
	Folie 20: Be your bridge keeper!
	Folie 21: Be your bridge keeper!
	Folie 22
	Folie 23: Thank You!

