
// 1

Bridging Pixels & Code
-- Teaching Computer Graphics to Technical Artists --

MATTHIEU DELAERE



//

Who am I?
Matthieu Delaere

• DAE Howest and BUAS MGT alumnus

• Senior Lecturer (C++ Graphics Programming) @ DAE Howest

• Senior Research Engineer @ Wētā FX

• Previously Rendering Researcher @ Unity

2



// 3

ACT I
Seeing Beyond the Pixels



//

Boundless Creation
• When we look at this, we see art. But behind every pixel, there is 

a sequence of instructions, data transformations, performance 
considerations, and much more. 

• For most students early in their (educational) career, these are 
often invisible and considered not high priority, even though 
they are crucial for game development!

• Most students concentrate on perfecting their craft rather than 
focusing on the product and overarching structure.

• This often resulted in:

• artists not being able to spot bottlenecks, optimize their 
scenes and explaining why art was made in the was it 
was. 

• programmers not being able to discuss more advanced 
concepts or produce proper alternatives based on 
constraints.

4

https://vimeo.com/1065465468?fl=pl&fe=vl 

https://vimeo.com/1065465468?fl=pl&fe=vl


//

Boundless Creation

5

https://forums.unrealengine.com/t/material-optimization/59111/6 

https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine 

https://forums.unrealengine.com/t/material-optimization/59111/6
https://forums.unrealengine.com/t/material-optimization/59111/6
https://forums.unrealengine.com/t/material-optimization/59111/6
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/niagara-fluids-quick-start-guide-for-unreal-engine


//

Boundless Creation
• The prominent effects are freezing when encountering “real” problems, hitting a skill ceiling, not speaking 

the technical language, lots of retraining needed, etc. 

• How did we get there, so what does not work:

• passive tutorial consumption → memorizing or copying is not understanding!
• theory without implementation → reading about swimming does not teach you swimming!
• tool-dependent knowledge → you learned where buttons are, not what buttons do!
• API learning without foundation → APIs abstract away important mechanisms!
• isolated skill development → games depend on bridging art and technology. Learning each side separately does 

not build a bridge!
• learning in siloed comfort zones → growth happens at the edge of capability and not in the comfort zone!

• Many traditional approaches focus on results… We have “optimized” for completion over understanding!

• Finishing a tutorial feels like progress, while often you are just following steps without deep understanding.

• Real learning is messy, frustrating and slow, but it works!

6



//

Boundless Creation

7

https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html 

https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unreal-engine-optimization-profiling-fundamentals.html


//

Boundless Creation
• The obvious solution is to subject yourself to productive struggle!

• Attempt something slight beyond your current capabilities.
• Fail at it. This is required and not optional!
• Debug, investigate and understand why you failed.

• Succeed through understanding!

• The “framework” is simple: Build → Analyze → Explain

• Build – implement something from scratch. It forces to fill knowledge gaps 
immediately.

• Analyze – break it deliberately, debug it and understand why it works or does not 
work.

• Explain – teach it to someone else (the community is your friend) via blogpost, 
video, presentation, etc. You cannot bullsh*t when teaching.

8

https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d 

https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d
https://medium.com/skillenza/what-does-it-take-to-become-a-great-software-engineer-22be56649c6d


// 9

ACT II
Making the Invisible Visible



//

What’s in the Box?!
• For both programmers and artists, build a software rasterizer using your preferred language (C++, Python, etc.).

• Remove all APIs and boilerplate. Focus on “raw pixels”, memory and mathematics! In other words, remove the black 
box and gradually learn core concepts. You cannot fully understand what you have not built.

• The key concept is that you reinvent the pipeline from scratch, not because we need a new renderer but because 
deep understanding requires reconstruction!

10



//

What’s in the Box?!
• Removing all unnecessary overhead (GPU and engine architecture, synchronization, etc.) allows for very focused 

examples and easy-to-showcase-and-test concepts or problems.

• What this achieves is:

• Data Literacy → you learn how vertex data gets transformed throughout the pipeline and how it affects pixels.
• Conceptual Insight → you learn why GPU stages exist without explicitly referencing the GPU just yet.
• Performance Intuition → you learn the impact of decisions (small triangles, data and lighting complexity, etc.).

• This approach does have challenges:

• Accessibility Barrier → a full coding assignment might still be too intimidating.
• Visualization Difficulty → some concepts are not always easy to visualize out-of-the-box.
• Assumed Understanding Risk → small conceptual gaps cannot be overlooked. Assuming you will get it later is 

dangerous.

• How to potentially deal with these challenges?

11



//

What’s in the Box?!
• While it might be counter intuitive at times, mix the visual coding part (writing a rasterizer) with standalone console applications or 

standalone demos using external tools, either static or with animated examples. The journey, not the result, matters!

• This lowers the accessibility barrier (contained examples), allows for tailored visual learning (e.g. using external tools the artist 
knows) and makes sure there are clear milestones for testing assumptions and understanding.

• Continuously use the lens of being a teacher. You deepen your understanding by teaching what you learn to others.

• BUILD → ANALYZE → TEACH

12

https://www.sidefx.com/docs/houdini/ref/panes/geosheet.html 

https://www.sidefx.com/docs/houdini/ref/panes/geosheet.html


//

What’s in the Box?!
• When implementing and testing features, follow the data and profile early on to understand the impact of decisions 

both in code and data. Playing around with different setups will help with your comprehension.

13

https://www.artstation.com/blogs/ericcorreia/2AMQl 

https://www.humus.name/index.php?page=News&ID=228 

https://www.artstation.com/blogs/ericcorreia/2AMQl
https://www.humus.name/index.php?page=News&ID=228


//

What’s in the Box?!
• Focus on the following concepts:

• Data flow and data transformation.
• Why is the position of a fragment a vec4, and in which space is each 

component?

• How to perform correct depth interpolation of attributes?
• Why the depth buffer is not linear? 
• What are the different ways to sample a texture (related to filtering)?
• How can your data influence the renderer (vertex attributes and count, 

texture resolutions and compression, etc.)?
• Even as an artist, learn the different types of memory and their 

properties (cache memory, bandwidth, etc.).
• What data is needed for per-pixel lighting, and which data can be shared 

among pixels?
• Focus on “input->function->output” as this will help you later!

14

https://mini.gmshaders.com/p/vertex 

• Before continuing, make sure your thoroughly understand why things work and how you have influence over it! 
You do not need the best implementation, but you need to be able to “connect the dots”.

• For mathematics or CS topics, learn Just-In-Time and not Just-In-Case! 

https://mini.gmshaders.com/p/vertex


// 15

ACT III
The Machine Scales Up



//

The same, but faster!
• Once you understand how pixels are “born”, you can scale up and see how GPUs actually make things faster through 

parallelization.

• Start with a simple API such as OpenGL or DirectX11. Key here is to map your learnings to this predefined graphics pipeline.

• Revisit your CPU-based rasterizer while doing this. When learning a simple API, the focus should be to learn the API, not 
core concepts. If you feel something is missing, go back to your rasterizer as it should be the easier environment to test 
things. Make sure there is a clear distinction between their purposes.

• At this point, while learning the API, there are two new things you should focus on as well:

• Learn shader coding (link this to the “input->function->output” of per-pixel lighting). It is a new language but make 
sure to understand the architecture and do not loose yourself in making fancy shaders from the get-go. 

• Learn about the GPU architecture!

16

https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction 

https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction


//

The same, but faster!
• Do not be intimidated by the GPU. There are great visual resources out there such as Render Hell by 

Simon Schreibt. These are equally valuable for artists and programmers!

• Once you understand what the GPU is doing on a high level, you realize that every artistic choice affects 
performance but also image quality.

• For shader programming, use existing frameworks or engines as the sandbox, though be careful and 
initially avoid purely node-based systems.

• During this stage of learning avoid:

• wrapping or hiding all API specific code. The purpose is not to write an agnostic renderer!
• writing a full-fledged (production) game engine.

• Instead, realize the focus is on understanding:

• a graphics API is just an extra indirection to communicate with the GPU.
• that using a graphics API is all about data and state management.
• that this management requires data transfer.

17

https://simonschreibt.de/gat/renderhell/ 

https://simonschreibt.de/gat/renderhell/


//

The same, but faster!
• Once the core concepts of OpenGL or DirectX 11 are well understood, one can switch to 

modern APIs such as Vulkan and DirectX 12. [optional for art-focused students]

• While these can be intimidating at first (again), there are only a “few” key differences, 
which if you understand these, you will understand it is not that hard:

• synchronization is explicit and must be handled with care. 
• resource management is more verbose which allows for more control.
• state tracking and setup is more explicit and sometimes cumbersome.

• When learning another new API, one must separate the new concepts from the API again!

• Some insights for learning Vulkan:

• Avoid the graphics pipeline when learning about synchronization and resources. 
Instead use the compute pipeline (another new topic you can explore with OpenGL 
first).

• Do not skip on synchronization details! Take your time to understand execution and 
memory barriers, and the related stage and access masks, thoroughly.

• Avoid render passes and use dynamic rendering first!

• Always question why you do something when using tutorials! Some things are wrong 
or not best practices (best practices lists do not help you in the beginning).

18



// 19

ACT IV
Bridging The Gap



//

Be your bridge keeper!
• While learning modern APIs are optional for artists, knowing computer graphics and the GPU are not!

• When using existing engines, be the bridge keeper and ask yourself questions. When you do not understand a term or 
parameter, use the documentation and go down the rabbit hole until you understand the implications.

20

https://montypython.fandom.com/wiki/Bridge_of_Death https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/ 

https://montypython.fandom.com/wiki/Bridge_of_Death
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/
https://produitabulles.wordpress.com/2016/05/01/the-tales-of-the-killer-rabbit/


//

Be your bridge keeper!
• While learning modern APIs are optional for artists, knowing computer graphics and the GPU are not!

• When using existing engines, be the bridge keeper and ask yourself questions. When you do not understand a term or 
parameter, use the documentation and go down the rabbit hole until you understand the implications. 

• Overall takeaways:

• Start from core principles and not APIs or engines → don’t rush into engine features or graphics APIs and 
instead understand what the pipeline does. Understanding beats memorizing!

• Find the origin → learning why techniques evolved to what they are now will give you a deeper understanding, 
and a bigger toolbox to make informed decisions.

• Build something small to see how it works → this can be a software rasterizer, but also a simple memory 
allocator, texture loader, toy shader, etc.

• Think in terms of data flow and cost → every vertex, texture, draw call, and more has a cost. Learn to trace 
how data moves and where time is spent. Understand that performance is the natural consequence of 
understanding flow.

• Stay curious → understanding grows by tinkering and doing things. When you find something new, take time 
to understand it. 

• Stay interactive → while framerate and performance is important, test your art and code in motion!

• Learn from artists/programmers → always learn from your “counterpart”! Take an additional class if needed.

21



// 22

The strongest bridges are built on deep foundations.

Not by learning every feature but by understanding the core principles that make everything else make sense.

The concepts that intimidate you are the ones worth learning. Just take it one step at a time.

Every expert was once a beginner who refused to give up!



// 23

Thank You! 
matthieu.delaere@howest.be 

mailto:matthieu.delaere@howest.be

	Folie 1: Bridging Pixels & Code -- Teaching Computer Graphics to Technical Artists --
	Folie 2: Who am I?
	Folie 3: ACT I Seeing Beyond the Pixels
	Folie 4: Boundless Creation
	Folie 5: Boundless Creation
	Folie 6: Boundless Creation
	Folie 7: Boundless Creation
	Folie 8: Boundless Creation
	Folie 9: ACT II Making the Invisible Visible
	Folie 10: What’s in the Box?!
	Folie 11: What’s in the Box?!
	Folie 12: What’s in the Box?!
	Folie 13: What’s in the Box?!
	Folie 14: What’s in the Box?!
	Folie 15: ACT III The Machine Scales Up
	Folie 16: The same, but faster!
	Folie 17: The same, but faster!
	Folie 18: The same, but faster!
	Folie 19: ACT IV Bridging The Gap
	Folie 20: Be your bridge keeper!
	Folie 21: Be your bridge keeper!
	Folie 22
	Folie 23: Thank You! 

