


Scope – Hitman & G2

• Internal port

• Live updates - Elusive Targets

• Older branch of G2

• No content changes

• No geometry streaming system

• Aspire to have low maintenance cost



Mobile Platforms – Smartphones & Tablets

• System on Chip (SoC) design

• Unified Memory

• 3-6W Power Budget

• Peak performance is not sustainable

• RAM Access is energy intensive
o1W = 150-200MB @ 60fps



Groundwork

• Game Porting Toolkit
o Trying out a Windows-DX12 build on macOS

• Try to find early failure points 
oMemory Budget

oUnsupported Features



Target

• Min Spec 
o iPhone 15 Pro (A17Pro)

o8GB unified memory, ~6GB usable

• iOS 18.0 - “Metal3"
oArgument Buffers - Tier 2

oResidency Sets*

• Device Capabilities
o iphone-performance-gaming-tier

• Entitlements:
o increased-memory-limit

o sustained-execution



Render Thread

• Main thread deals with gameplay logic and loading

• Render thread culls and records GPU commands
oReflect step copies necessary data from main thread to render thread

• Configurable maximum latency between main and render
oUsed for dealing with main thread spikes

• Not 1:1 with display frames
oRender thread takes over during loading & sometimes doesn’t present a frame



Whose Main Thread Is It Anyway?

• Apple APIs are based on event driven model

• A lot of them can only run on main thread
oRuns an event loop for processing I/O and callbacks

oAvoid blocking as much as possible

• Our main and render threads have their own event loops
oNeeds to do blocking waits for other threads

• Game runs on its own “main” thread
oPolls CFRunLoop to allow system main thread to schedule function

o Schedules an update function on system main thread every frame



Acquiring a Drawable

• Metal term for back buffer

• Various options available
onextDrawable, CADisplayLink, CAMetalDisplayLink

• Threading setup makes things difficult

• Consistency problems
o Experienced up to 2 ms variability

oProblematic when GPU downclocks to fit frame in 33 ms



Acquiring a Drawable

• Call nextDrawable as late as possible
o Early submit before waiting

• Gives the system a bit of wiggle room



Frame Pacing

• Frames should display the same amount of time
oUnevenness can cause average FPS to feel lower than it is

• Use presentAfterMinimumDuration:
o Forces the drawable to be on screen for a minimum duration



The Full Picture



Resource Pipeline

• Dedicated resource server

• Spawns custom resource packers

• Runs on windows and serves data across the network

• Separate blob for retail builds



Texture Packing

• ASTC: more mobile friendly

• Block size heuristic for BCn->ASTC

• Apple don't expose GPU swizzling

• Can be very slow to compress

From: nVidia Developer Blog

https://developer.nvidia.com/astc-texture-compression-for-game-assets


Shader Compilation

• We author in HLSL

• Thin macro layer on top to express techniques

• Premade "shader nodes" that allow TAs to edit visually

• Small offline tool to generate cbuffer structs





Shader Compilation

• Classic approach: SPV-Cross



Shader Compilation

• New approach: Metal Shader Converter

• Official support from Apple

• Can always mix in with MSL shaders

• Exposes FB-Fetch

• Embeds shader source (HLSL)



Binding Model

• DX12 Root Signatures

• MSC + DXC Reflection

• 2 Level Argument Buffers

• Linear Allocator per frame in flight





Resource Binding

• Null Buffers & Dummy Textures are required

• OOB Reads & Writes are not discarded

• MSC forces texture array views (prior to version 3)

• MSC Runtime header adds redundant calls

• You can use setBytes: to provide data inline



TB;DR

• Tile Based Deferred Rendering
oNot related to Deferred Rendering

• Use fast local memory to significantly reduce bandwidth

Position-only vertex shading Triangles are binned to tiles Full shading locally in tiles



Render Passes

• Needs to be created explicitly

• Frame graph ideal for this
oUnfortunately not a thing in HITMAN

o Too much work to refactor codebase

• Create on-the-fly instead



Render Passes

• Set dirty bit when render targets change

• If set when making a draw call, compare current & desired RTs



Render Pass Setup

• Minimal changes made to bind textures early
oMask out writes for RTs that aren't actually bound for the draw call

oAllows more passes to be merged



Render Pass Setup

• Naïve approach, but has worked out mostly well
oHelps that the high-level rendering code is already well structured

• Our load/store actions are very conservative
oMost stores end up being used though

o Special handling for certain cases that didn't



Compute Pass Setup

• Metal exposes serial and concurrent 
compute passes
o Serial puts a barrier between all 

dispatches in pass

oConcurrent requires manual barriers

• We use concurrent only
oAllows for overlapping dispatches

oOur deferred shading dispatches are 
meant to run in parallel

o Less driver overhead than 1 pass per 
dispatch



Compute Pass Setup

• Resources are tracked between dispatches
o Fixed size buffer storing up to 32 resources needing a barrier

• Flush buffer on dispatch or if we hit the limit
omemoryBarrierWithResources:count:

oA bit conservative, but works well enough

oBarrier only blocks within the same compute pass



Command Buffer Handling

• Command buffers in a ring buffer
• Unwrapped index used as fence value

• Used as synchronization primitive in engine for waiting on GPU

• Ring tracks currently submitted, free and completed index
• Stored as unwrapped uint64 values

• Maximum of 4 active command buffers
• Helps keep memory usage down



GPU Synchronization

• We rely on the automatic hazard tracking in Metal
oWould like to do our own, but bigger fish to fry

o It's a lot of work to move away from

o Ended up good enough

• Tried implementing async compute
oDidn't see performance gain

oMetal already runs passes in parallel



Resource Allocators: Buffers

• Read-Only: suballocate from large MTLBuffer

• Split between per-frame and persistent

• Writeable: Individual allocation to avoid over-synchronization

• All buffers are shared resources

• Use setBufferOffset: methods as much as possible



Resource Allocators: Textures

• Read-Only: MTLHeap
oBalance number of heaps: num residency calls vs upfront allocation size

• Read-Only: Individual allocation + Global MTLResidencySet
o Single make resident call per command buffer / queue

• Writeable: Individual allocation
oPool resources

oMake resident with useResource:stages:

oMake sure to call the stages variant, allows for potential VS-PS overlap

• Upload data via Ring Buffer



Resource Allocators: Textures

Lossless Compression:

• MTLTextureUsagePixelFormatView

• Linear textures

Buffer textures:

• No depth formats

• No texture arrays

• No mips



Upscaling

• MetalFX Spatial
oVery easy to integrate

oOver sharpens the image

• MetalFX Temporal
o Integrates well with our SSAA pipeline setup

oBetter image quality, but can look soft at lower resolutions

• Native Resolution UI
oWe draw our UI as part of the spatial upscaling pass

oNo extra bandwidth cost, since it’s needed anyway

oAllows for very crisp UI on top of decoupled render resolution











PSO Caching: Shader Prewarming

• Gather PSO data during 
gameplay

• Create helper state objects at 
engine startup 

• Create PSOs at level load time

• Requires QA pass to gather all 
data



What Does It Look Like?





Rapid Fire

• Aggressive downclocking
oHard to see performance improvements - device might decide to run at lower 

frequency

oMakes dynamic resolution scaling hard to implement

• CPU-GPU Load balancing - GPU saves can help CPU
oAlso makes performance improvements hard to see directly

• Limit number of command buffers per frame
oDispatching each has a big overhead



Rapid Fire

• Use Instruments.app

• Metal Frame Capture
oDisables GPU downclock

• Do not spin lock
oConsumes battery

oOS gives the thread more priority

• Do not sleep
oOS deprioritizes the thread, can result in ~10ms wake up delay

oRely on wake ups from other threads instead



Rapid Fire

• Clearing memory can be expensive

• Prefer direct release over autorelease for Objective-C objects

• Follow Cocoa memory management policy

• System Clock Time
oCLOCK_MONOTONIC queries time of day to increment while system sleeps

o Fairly costly when used a lot

oCLOCK_UPTIME_RAW does not



Rapid Fire

• Debug Groups / Signposts
oMTLCommandBuffer and MTLCommandEncoder has push/popDebugGroup

oBut we don’t know where our passes will begin and end in the future

o Ended up just putting first two levels of debug groups on the command buffer

• Thin LTO / Compilation Time Comparison
oUsually HITMAN compiles with unity builds, but we don’t have that working 

for Darwin toolchain

o Thin LTO didn’t add too much extra time, and made a huge performance 
difference

o Just add -flto=thin



Conclusions

• Shipped running at 30 FPS
• iPhone 15 Pro and newer

• Overall fun project to work on
• A healthy dose of pain

• Many interesting technical challenges

• Learned a ton of things doing it ourselves



Thank you!



Q&A


	Folie 1
	Folie 2: Scope – Hitman & G2
	Folie 3: Mobile Platforms – Smartphones & Tablets
	Folie 4: Groundwork
	Folie 5: Target
	Folie 6: Render Thread
	Folie 7: Whose Main Thread Is It Anyway?
	Folie 8: Acquiring a Drawable
	Folie 9: Acquiring a Drawable
	Folie 10: Frame Pacing
	Folie 11: The Full Picture
	Folie 12: Resource Pipeline
	Folie 13: Texture Packing
	Folie 14: Shader Compilation
	Folie 15
	Folie 16: Shader Compilation
	Folie 17: Shader Compilation
	Folie 18: Binding Model
	Folie 19
	Folie 20: Resource Binding
	Folie 21: TB;DR
	Folie 22: Render Passes
	Folie 23: Render Passes
	Folie 24: Render Pass Setup
	Folie 25: Render Pass Setup
	Folie 26: Compute Pass Setup
	Folie 27: Compute Pass Setup
	Folie 28: Command Buffer Handling
	Folie 29: GPU Synchronization
	Folie 30: Resource Allocators: Buffers
	Folie 31: Resource Allocators: Textures
	Folie 32: Resource Allocators: Textures
	Folie 33: Upscaling
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38: PSO Caching: Shader Prewarming
	Folie 39: What Does It Look Like?
	Folie 40
	Folie 41: Rapid Fire
	Folie 42: Rapid Fire
	Folie 43: Rapid Fire
	Folie 44: Rapid Fire
	Folie 45: Conclusions
	Folie 46: Thank you!
	Folie 47: Q&A

