@ Graphics Programming Conference, November 18-20, Breda 202 5

Scope — Hitman & G2

* Internal port
* Live updates - Elusive Targets
* Older branch of G2

* No content changes .

* No geometry streaming system

* Aspire to have low maintenance cost

) Graphics Programming Conference, November 18-20, Breda

Mobile Platforms — Smartphones & Tablets

 System on Chip (SoC) design

* Unified Memory

* 3-6W Power Budget

* Peak performance is not sustainable

* RAM Access is energy intensive
o 1W = 150-200MB @ 60fps

) Graphics Programming Conference, November 18-20, Breda

Groundwork

 Game Porting Toolkit
o Trying out a Windows-DX12 build on macOS

* Try to find early failure points

M3 Max
o Memory Budget 2400x1800
Metal: 1.15GB App:
o Unsupported Features ol i

FPS

GPU 14 .24ms
Frame Interval 16.67ms °

) Graphics Programming Conference, November 18-20, Breda

Target

* Min Spec * Device Capabilities
o iPhone 15 Pro (A17Pro) o iphone-performance-gaming-tier
o 8GB unified memory, ~6GB usable

* iO0S 18.0 - “Metal3" * Entitlements:
o Argument Buffers - Tier 2 o increased-memory-limit
o Residency Sets* o sustained-execution

) Graphics Programming Conference, November 18-20, Breda

Render Thread

* Main thread deals with gameplay logic and loading

e Render thread culls and records GPU commands
o Reflect step copies necessary data from main thread to render thread

e Configurable maximum latency between main and render
o Used for dealing with main thread spikes

* Not 1:1 with display frames
o Render thread takes over during loading & sometimes doesn’t present a frame

Main thread Main ¢ I Main 5 i Main 6 Main ¥

waoits fFor Render 4

Render thread Render 2 Render 3 Render 4 | Render 5 I

) Graphics Programming Conference, November 18-20, Breda

Whose Main Thread Is It Anyway?

* Apple APIs are based on event driven model

* A lot of them can only run on main thread
o Runs an event loop for processing I/0 and callbacks
o Avoid blocking as much as possible

 Our main and render threads have their own event loops
o Needs to do blocking waits for other threads

 Game runs on its own “main” thread
o Polls CFRunLoop to allow system main thread to schedule function
o Schedules an update function on system main thread every frame

) Graphics Programming Conference, November 18-20, Breda

Acquiring a Drawable

e Metal term for back buffer

* Various options available
o nextDrawable, CADisplayLink, CAMetalDisplayLink

* Threading setup makes things difficult

* Consistency problems
o Experienced up to 2 ms variability
o Problematic when GPU downclocks to fit frame in 33 ms

) Graphics Programming Conference, November 18-20, Breda

Acquiring a Drawable

* Call nextDrawable as late as possible
o Early submit before waiting

* Gives the system a bit of wiggle room

Render thread \wﬁit
GPU | #

b:splatf

) Graphics Programming Conference, November 18-20, Breda

Frame Pacing

* Frames should display the same amount of time
o Unevenness can cause average FPS to feel lower than it is

* Use presentAfterMinimumDuration:
o Forces the drawable to be on screen for a minimum duration

GPU 1 2 3 4 5 6
Display 0 1 2 3 4 5
V-blanks l I | l |

) Graphics Programming Conference, November 18-20, Breda

The Full Picture

Main tl-n're_aal. Main 4 ,J_ Main 5 | Main 6 Main ¥ Main B Main 9

\ waits For Render 2

Render thread Render 2 Render 3 Render 4 /,‘ﬂ Render 5 I Render 6 Render ¥
\ \wnit& For GPU 3 & D‘u'.-‘.Plo.lf 2

GPU GPU 1 GPU 2 GPU 3 \ GPU 4 | GPU 5 GPU 6

Disphy D]gphtf 0 I)Is[on'm;f 1 Dispfa.tf 2 DISPI!Q{,‘;' 3 D]Et::llal.{(4 ! bisphy 5 l

. Graphics Programming Conference, November 18-20, Breda

Resource Pipeline

e Dedicated resource server

e Spawns custom resource packers

* Runs on windows and serves data across the network
» Separate blob for retail builds

| Metadata | Resource Header \

) Graphics Programming Conference, November 18-20, Breda

Texture Packing

e ASTC: more mobile friendly * Apple don't expose GPU swizzling
* Block size heuristic for BCn->ASTC < Can be very slow to compress

Original, 16 or 24bpp BC3n/DXT5nm, 8bpp ASTC 5x5, 5.12bpp

From: nVidia Developer Blog

., Graphics Programming Conference, November 18-20, Breda

https://developer.nvidia.com/astc-texture-compression-for-game-assets

Shader Compilation

* We author in HLSL

* Thin macro layer on top to express techniques

* Premade "shader nodes" that allow TAs to edit visually
* Small offline tool to generate cbuffer structs

) Graphics Programming Conference, November 18-20, Breda

CBUFFER_SHARED_BEGIN(chColorCorrection, 5)
FLOAT (fWeight®)
FLOAT (fWeight1)
INT(nGamma)
CBUFFER_SHARED_END(cbColorCorrection)

CBUFFER_SHARED_BEGIN(cbColorCorrectionResolve, 5)
FLOAT (fNeutrallLUT)
CBUFFER_SHARED_END(cbColorCorrectionResolve)

CBUFFER_CBCOLORCORRECTION_SLOT = 5,
CBUFFER_CBCOLORCORRECTIONRESOLVE_SLOT
S_cbColorCorrection

float fWeightO;
float fWeightl;

CBUFFER_CBCOLORCORRECTIONINSTANCE_COUNT = 4896, \ int nGamma;
CBUFFER_CBCOLORCORRECTIONRESOLVEINSTANCE_COUNT = 40896, '

CONSTANT_BUFFER(cbColorCorrection, 5, S_cbColorCorrection);

S_cbColorCorrection CBCOLORCORRECTION_FWEIGHTO_OFFSET 0
CBCOLORCORRECTION_FWEIGHT1_OFFSET 4
float fWeightO; CBCOLORCORRECTION_NGAMMA_OFFSET 8
float fWeightl;
int nGamma;
float __pad3;

S_cbColorCorrectionResolve S_cbColorCorrectionResolve

float fNeutrallLUT;

float fNeutrallLUT; }:
float __padil; '

float —_pad2; CONSTANT_BUFFER(cbColorCorrectionResolve, 5, S_chColorCorrectionResolve);
float __pad3;

CBCOLORCORRECTIONRESOLVE_FNEUTRALLUT_OFFSET 0

2 Graphics Programming Conference, November 18-20, Breda 02 5

Shader Compilation

* Classic approach: SPV-Cross

SPIR-V
DXC CROSS MC

) Graphics Programming Conference, November 18-20, Breda

Shader Compilation

* New approach: Metal Shader Converter
 Official support from Apple
e Can always mix in with MSL shaders
* Exposes FB-Fetch
* Embeds shader source (HLSL)

e ey

) Graphics Programming Conference, November 18-20, Breda

Binding Model

* DX12 Root Sighatures
* MISC + DXC Reflection

* 2 Level Argument Buffers
* Linear Allocator per frame in flight

SRV | SRV | ; \ ; ' CBV ; CBvV { CBV , CBvV , CBV , CBvV
E b oLE) AV SAR 'y SV e e PN e e PRV e
L GroBaL Il Vs Il Ps Il DS Il HS —1

) Graphics Programming Conference, November 18-20, Breda

/\ TLAB (MTLBuffer)

GLOBAL VERTEX PIXEL DOMAIN HULL

248

DT

) Graphics Programming Conference, November 18-20, Breda

Resource Binding

* Null Buffers & Dummy Textures are required

* OOB Reads & Writes are not discarded

* MSC forces texture array views (prior to version 3)
* MSC Runtime header adds redundant calls

* You can use setBytes: to provide data inline

) Graphics Programming Conference, November 18-20, Breda

1B;DR

* Tile Based Deferred Rendering
o Not related to Deferred Rendering

e Use fast local memory to significantly reduce bandwidth

Position-only vertex shading Triangles are binned to tiles Full shading locally in tiles

) Graphics Programming Conference, November 18-20, Breda

Render Passes

* Needs to be created explicitly

* Frame graph ideal for this
o Unfortunately not a thing in HITMAN
o Too much work to refactor codebase

* Create on-the-fly instead

) Graphics Programming Conference, November 18-20, Breda

Render Passes

 Set dirty bit when render targets change
* If set when making a draw call, compare current & desired RTs

Unnecessary pass with no draws

{

7 i
Eage,r PG\S.S. crea‘t‘uon Pass 4) Pass B Pass C]

X SetRenderTargets(4) E Drow : Drow ': Draw SetRenderTargets(B) || SetRenderTargets(C) : Drow : Droaw : Drow *

..

Laz’-lf pass creation Pass A] [Pass C]

V SetRander’rargetS(A) - Draw :- Draw :- Draw : Setl?enoter'rargeta(B) Se.tﬁender'rargets((!) - Draw '- Drow :- Drow :

..

) Graphics Programming Conference, November 18-20, Breda

Render Pass Setup

* Minimal changes made to bind textures early
o Mask out writes for RTs that aren't actually bound for the draw call
o Allows more passes to be merged

Needs new render pass

}

X SetRenderTargets(GBuffer) . Draw I. Drow .. Droaw SetRenderTargets(GBuffer+Hair) : Draw ': Drow .: Drow *

--

J Se,‘tRe.nder'rargets(GBwFFer+Ha?r) I Draw :. Droaw :' Drow : Se,tRenderTarsets(GBuFFer+Ho.ir) : Drow 'I Draw :. Drow :

..

) Graphics Programming Conference, November 18-20, Breda

Render Pass Setup

* Naive approach, but has worked out mostly well
o Helps that the high-level rendering code is already well structured

* Our load/store actions are very conservative
o Most stores end up being used though
o Special handling for certain cases that didn't

) Graphics Programming Conference, November 18-20, Breda

Compute Pass Setup

* Metal exposes serial and concurrent Serial
compute passes ’ I c ‘ ‘ ‘ > | -
o Serial puts a barrier between all
dispatches in pass
o Concurrent requires manual barriers

Concurrent

A D

* We use concurrent only

o Allows for overlapping dispatches

o Our deferred shading dispatches are
meant to run in parallel

o Less driver overhead than 1 pass per
dispatch

) Graphics Programming Conference, November 18-20, Breda

Compute Pass Setup

* Resources are tracked between dispatches
o Fixed size buffer storing up to 32 resources needing a barrier

* Flush buffer on dispatch or if we hit the limit
o memoryBarrierWithResources:count:
o A bit conservative, but works well enough
o Barrier only blocks within the same compute pass

) Graphics Programming Conference, November 18-20, Breda

Command Buffer Handling

 Command buffers in a ring buffer

* Unwrapped index used as fence value
* Used as synchronization primitive in engine for waiting on GPU

* Ring tracks currently submitted, free and completed index
e Stored as unwrapped uint64 values

* Maximum of 4 active command buffers
* Helps keep memory usage down

) Graphics Programming Conference, November 18-20, Breda

GPU Synchronization

* We rely on the automatic hazard tracking in Metal
o Would like to do our own, but bigger fish to fry
o It's a lot of work to move away from
o Ended up good enough

* Tried implementing async compute
o Didn't see performance gain
o Metal already runs passes in parallel

) Graphics Programming Conference, November 18-20, Breda

Resource Allocators: Buffers

e Read-Only: suballocate from large MTLBuffer

* Split between per-frame and persistent

* Writeable: Individual allocation to avoid over-synchronization
* All buffers are shared resources

* Use setBufferOffset: methods as much as possible

) Graphics Programming Conference, November 18-20, Breda

Resource Allocators: Textures

* Read-Only: MTLHeap

o Balance number of heaps: num residency calls vs upfront allocation size

* Read-Only: Individual allocation + Global MTLResidencySet

o Single make resident call per command buffer / queue

* Writeable: Individual allocation
o Pool resources
o Make resident with useResource:stages:
o Make sure to call the stages variant, allows for potential VS-PS overlap

e Upload data via Ring Buffer

) Graphics Programming Conference, November 18-20, Breda

Resource Allocators: Textures

Lossless Compression:

» MTLTextureUsagePixelFormatView
* Linear textures

Buffer textures:

* No depth formats

* No texture arrays

* No mips

) Graphics Programming Conference, November 18-20, Breda

Upscaling

* MetalFX Spatial

o Very easy to integrate
o Over sharpens the image

* MetalFX Temporal

o Integrates well with our SSAA pipeline setup
o Better image quality, but can look soft at lower resolutions

* Native Resolution Ul
o We draw our Ul as part of the spatial upscaling pass
o No extra bandwidth cost, since it’s needed anyway
o Allows for very crisp Ul on top of decoupled render resolution

) Graphics Programming Conference, November 18-20, Breda

@ Show Menu

f? Graphics Programming Conference, November 18-20, Breda 2025

@ Show Menu

f? Graphics Programming Conference, November 18-20, Breda 2025

@ Show Menu

f? Graphics Programming Conference, November 18-20, Breda 2025

=

l..-“ﬁ,n)

LT

@ Show Menu

f? Graphics Programming Conference, November 18-20, Breda 2025

PSO Caching: Shader Prewarming

* Gather PSO data during
ga meplay uinté4 vertexShader :

uinté4 pixelShader :

* Create helper state objects at ey s den i iy
. uinté4 blendState :
englne Sta rtup uinté4 depthStencilState :

uinté4 topologyType :

. uinté4 _pad0 : 1;

e Create PSOs at level load time Jintéd renderTargetformat
uinté4 domainShader :
uinté4 hullShader :

) ReqUIreS QA pass to gather a” U?ntéa computeShadér‘:
data uinté4 _padl : 128 - 113;

uinté4
uinté4

) Graphics Programming Conference, November 18-20, Breda

What Does It Look Like?
SRR T CRY O -ELMINATE VKIORNOVIKOY . ‘ %a

. C) ELIMINATE DALIA MARGOLIS

T—_—

—-

"Make it big, bold and impossible to ignore."

2 Graphics Programming Conference, November 18-20, Breda 02 5

Overview

Command Buffers
Render Encoders
Compute Encoders
Blit Encoders
Draw Calls

Dispatch Calls

Performance
Vertices
GPU Time

Performance State

Memory

lTextures
Buffers
Heaps

Other

Show Dependencies

Show Performance

7.168.305
17.46 ms
Medium

Show Memory

1,46 GIB
649,73 MIB
96,00 MIB
46,06 MIB

000 = =

B B2 QA Qa & @
i Frame 5735: Immediate 0
> @ ParticleFX
« il TraverseActiveDestination0
« [l CameraTraverse_
« il GBuffer
s i Compute Encoder 1 0x4d0808c00

B Render Encoder 2 0x4d080a8b0
” K]

E Render Encoder 3 Ox4d08097a0 12.91%

SR . R
X B Render Encoder 4 0x4d0808690

> @@ RenderSampleLightingMinMax

> @@ ScreenSpaceReflections

» i EndCalculateLightLists

> @ DrawShadowMap

> i DrawShadowMap

> i DrawShadowMap

> i DrawShadowMap

> i DrawShadowMap

> i DrawShadowMap

> i DrawShadowMap

> [DrawShadowMap

> il Emissive

> il DrawGates

> @ Transparent

> @@ ApplyScattering

> [TAA

> . 24652 [encodeWaitForEvent:0x10de32df0 val...

> . 24653 [encodeSignalEvent:0x10de32df0 valu...

« i Frame 5735: Immediate 1
« il TraverseActiveDestination0
~ [CameraTraverse_

Filter

|

Hitman WOA - Debugging GPU Workload

() Performance } No Selection

o & Overview | Timeline Shaders HeatMap Cost Graph

Filter Tracks

000.000.000 005.000.000

Encoders

Rend..97a0 Render E..B08690
4. 1808081V 1.993.116 Vertices
bt |~

> Vertex

Fragment

Compute

Shaders

Load Action Shaders Lo...80
o

Filter Counters

Counters

> Active Cores

% GPU Cores

Occupancy

% Shader Core Resources

Occupancy Manager
% Shader Core Rescurces

Instruction Throughput
% Peak Instructi..put Performance

Shader Launch Limiter
% Peak Performance

Bandwidth

O

> . Render dEncoder 3 O 7a0 (MTLRenderC...
> . Encoder Statistics 801 draw calls, 33,2MB load/store bandw...
> . Frame Statistics 2989 draw calls, 105 dispatch calls, 0B loa...

Auto

) Graphics Programming Conference, November 18-20, Breda

All Counters Occupancy Limiter Utilization

Counters

010.000.000

Compute...0808380

Memory Raytracing Cache

000.000.000 - 120.795.8(

Filter

4
a

04 (120.80 ms) |wsl

02

Rapid Fire

* Aggressive downclocking

o Hard to see performance improvements - device might decide to run at lower
frequency

o Makes dynamic resolution scaling hard to implement
* CPU-GPU Load balancing - GPU saves can help CPU

o Also makes performance improvements hard to see directly

* Limit number of command buffers per frame
o Dispatching each has a big overhead

) Graphics Programming Conference, November 18-20, Breda

Rapid Fire

* Use Instruments.app

* Metal Frame Capture
o Disables GPU downclock

* Do not spin lock
o Consumes battery
o OS gives the thread more priority

* Do not sleep
o OS deprioritizes the thread, can result in ~10ms wake up delay
o Rely on wake ups from other threads instead

) Graphics Programming Conference, November 18-20, Breda

Rapid Fire

* Clearing memory can be expensive
* Prefer direct release over autorelease for Objective-C objects
* Follow Cocoa memory management policy

e System Clock Time
o CLOCK_MONOTONIC gueries time of day to increment while system sleeps

o Fairly costly when used a lot
o CLOCK_UPTIME_RAW does not

) Graphics Programming Conference, November 18-20, Breda

Rapid Fire

* Debug Groups / Signposts
o MTLCommandBuffer and MTLCommandEncoder has push/popDebugGroup
o But we don’t know where our passes will begin and end in the future
o Ended up just putting first two levels of debug groups on the command buffer

* Thin LTO / Compilation Time Comparison

o Usually HITMAN compiles with unity builds, but we don’t have that working
for Darwin toolchain

o Thin LTO didn’t add too much extra time, and made a huge performance
difference

o Just add -flto=thin

) Graphics Programming Conference, November 18-20, Breda

Conclusions

 Shipped running at 30 FPS

* iPhone 15 Pro and newer

e Overall fun project to work on
* A healthy dose of pain
* Many interesting technical challenges
* Learned a ton of things doing it ourselves

) Graphics Programming Conference, November 18-20, Breda

Thank youl ure

	Folie 1
	Folie 2: Scope – Hitman & G2
	Folie 3: Mobile Platforms – Smartphones & Tablets
	Folie 4: Groundwork
	Folie 5: Target
	Folie 6: Render Thread
	Folie 7: Whose Main Thread Is It Anyway?
	Folie 8: Acquiring a Drawable
	Folie 9: Acquiring a Drawable
	Folie 10: Frame Pacing
	Folie 11: The Full Picture
	Folie 12: Resource Pipeline
	Folie 13: Texture Packing
	Folie 14: Shader Compilation
	Folie 15
	Folie 16: Shader Compilation
	Folie 17: Shader Compilation
	Folie 18: Binding Model
	Folie 19
	Folie 20: Resource Binding
	Folie 21: TB;DR
	Folie 22: Render Passes
	Folie 23: Render Passes
	Folie 24: Render Pass Setup
	Folie 25: Render Pass Setup
	Folie 26: Compute Pass Setup
	Folie 27: Compute Pass Setup
	Folie 28: Command Buffer Handling
	Folie 29: GPU Synchronization
	Folie 30: Resource Allocators: Buffers
	Folie 31: Resource Allocators: Textures
	Folie 32: Resource Allocators: Textures
	Folie 33: Upscaling
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38: PSO Caching: Shader Prewarming
	Folie 39: What Does It Look Like?
	Folie 40
	Folie 41: Rapid Fire
	Folie 42: Rapid Fire
	Folie 43: Rapid Fire
	Folie 44: Rapid Fire
	Folie 45: Conclusions
	Folie 46: Thank you!
	Folie 47: Q&A

