
Writing Shaders Today: Complexity Abounds

• Shader codebases have become incredibly

large & complex

• Developers need to deploy to many

platforms

• Shader combinatorial explosion

• Fragile manual data binding models

• New graphics techniques & neural graphics

discontinuity

GLSL

Slang
HLSL

CUDA

C (CPU)

PyTorch

Optix

WGSL

GLSL

HLSL 2018

MSL

Slang: Open-Source and Cross-Platform

The Slang Developer Community

Join us on Discord!

Developer interest continuing to grow!
● 4700+ GitHub Stars, >60 active contributors

● >1000 Discord members, lively discussion

threads

Try it out on the web: https://try.shader-slang.org

See the documentation: https://docs.shader-slang.org

https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org

Modern Features for Modern Shaders

Interfaces

Visibility

Extensions

Generics

Property

Optional<T>

Modules

Material

Properties
Camera Effects Post-Processing

myShader.slang

Modules: Organizing Your Code

Begin your module definition with module
// material.slang
module material;

public struct Material {
public float4 evalBRDF(float3)
{ /* ... */ }

internal float4 myPrivateMethod()
{ /* ... */ }

private float4 m_someVar;

}

// material.slang
module material;

public struct Material {
public float4 evalBRDF(float3)
{ /* ... */ }

internal float4 myPrivateMethod()
{ /* ... */ }

private float4 m_someVar;

}

Use public declarations to create types, methods,

and functions visible to importing modules

internal declarations are only visible inside the

current module.

If no visibility modifier is provided, all declarations

default to internal

private declarations are only visible inside the

current type

Modules: Organizing Your Code

// material.slang
module material;

public struct Material {
public float4 evalBRDF(float3)
{ /* ... */ }

internal float4 myPrivateMethod()
{ /* ... */ }

}

// material.slang
module material;

public struct Material {
public float4 evalBRDF(float3)
{ /* ... */ }

internal float4 myPrivateMethod()
{ /* ... */ }

}

// scene.slang
import material;

struct Scene {
StructuredBuffer<Material> materials;

void compute(float3 wi, float3 wo) {
float4 result =

materials[0].evalBRDF(wi, wo);

materials[0].myPrivateMethod();
}

}

// scene.slang
import material;

struct Scene {
StructuredBuffer<Material> materials;

void compute(float3 wi, float3 wo) {
float4 result =

materials[0].evalBRDF(wi, wo);

materials[0].myPrivateMethod();
}

}

ERROR: ‘myPrivateMethod’ is not accessible from the current contextERROR: ‘myPrivateMethod’ is not accessible from the current context

Pull in modules with import

Visibility enforcement as you type

surfaceIntegrator.hlsl

mainShader1.hlsl

lighting.hlsl

textureUtils.hlsl

disneyBRDF.hlsl

woodMaterial.hlsl

stoneMaterial.hlsl

textureUtils.hlsl

mainShader1.hlsl

surfaceIntegrator.hlsl

lighting.hlsl

textureUtils.hlsl

disneyBRDF.hlsl

woodMaterial.hlsl

stoneMaterial.hlsl

textureUtils.hlsl

mainShader2.hlsl

surfaceIntegrator.hlsl

lighting.hlsl

textureUtils.hlsl

disneyBRDF.hlsl

plasticMaterial.hlsl

plasterMaterial.hlsl

textureUtils.hlsl

RECOMPILING RECOMPILING

#include-style with HLSL, GLSL, MSL
Modules: Streamline Compilation

Modules: Streamline Compilation

surfaceIntegrator.slang

mainShader1.slang

lighting.slang

textureUtils.slang

disneyBRDF.slang

woodMaterial.slang

stoneMaterial.slang

import-style with Slang

Modules: Streamline Compilation

surfaceIntegrator.slang

mainShader1.slang

lighting.slang

textureUtils.slang

disneyBRDF.slang

woodMaterial.slang

stoneMaterial.slang

import-style with Slang

mainShader2.slang

plasticMaterial.slang

plasterMaterial.slang

Modules: Streamline Compilation

surfaceIntegrator.slang

mainShader1.slang

lighting.slang

textureUtils.slang

disneyBRDF.slang

woodMaterial.slang

stoneMaterial.slang

import-style with Slang

mainShader2.slang

plasticMaterial.slang

plasterMaterial.slang

Specialization with Interfaces & Generics

Interfaces

• Define a contract for behavior

• Swap implementations without

macros or copy/paste

• Enforce correctness at compile

time

Generics

• Reuse algorithms over a

constraint

• Specialize to concrete code per

use

public interface IBrdf {

// Required method for evaluating the BRDF

float3 eval(float3 n, float3 v, float3 l, float3 a);

}

public struct Lambertian : IBrdf {

float3 eval(float3 n, float3 v, float3 l, float3 a) {

// ... (implementation details)

}

}

public float3 shade<T : IBrdf>(T b, float3 n, float3 v,

float3 l, float3 a) {

return b.eval(n, v, l, a);

}

float3 c1 = shade(Lambertian(), n, v, l, albedo);

float3 c2 = shade(GGX(), n, v, l, albedo);

public interface IBrdf {

// Required method for evaluating the BRDF

float3 eval(float3 n, float3 v, float3 l, float3 a);

}

public struct Lambertian : IBrdf {

float3 eval(float3 n, float3 v, float3 l, float3 a) {

// ... (implementation details)

}

}

public float3 shade<T : IBrdf>(T b, float3 n, float3 v,

float3 l, float3 a) {

return b.eval(n, v, l, a);

}

float3 c1 = shade(Lambertian(), n, v, l, albedo);

float3 c2 = shade(GGX(), n, v, l, albedo);

Fine-Grained Module API Control

Properties

• Typed, declarative knobs

(instead of #define toggles)

• Expose defaults – callers set

them explicitly

// material.slang
module material;

public interface IMaterial {

property float roughness { get; }

float4 evalBRDF(float3 n, float3 v, float3 l);

}

// A simple implementation of the interface

public struct SimpleMaterial : IMaterial {

public property float roughness { get { return 0.8; } }

public float4 evalBRDF(float3 n, float3 v, float3 l)

{ /* ... */ }

}

// material.slang
module material;

public interface IMaterial {

property float roughness { get; }

float4 evalBRDF(float3 n, float3 v, float3 l);

}

// A simple implementation of the interface

public struct SimpleMaterial : IMaterial {

public property float roughness { get { return 0.8; } }

public float4 evalBRDF(float3 n, float3 v, float3 l)

{ /* ... */ }

}

Interfaces can make properties

required

Fine-Grained Module API Control

Extensions

• Add methods to existing types

without editing original code

• Great for optional features in

separate packages

// material.slang
module material;

public interface IMaterial {

property float roughness { get; }

float4 evalBRDF(float3 n, float3 v, float3 l);

}

// material.slang
module material;

public interface IMaterial {

property float roughness { get; }

float4 evalBRDF(float3 n, float3 v, float3 l);

}

// In some other module…

import material;

extension IMaterial

{

public float3 calcRefract(float3 view, float3 normal)

{ /* ... */ }

}

// In some other module…

import material;

extension IMaterial

{

public float3 calcRefract(float3 view, float3 normal)

{ /* ... */ }

}

Presence Patterns

Optional<T>

• Runtime presence/absence with

explicit checks

• Replaces sentinels/bitflags

import material;

float3 shadeObject(

MyObject obj,

Optional<IMaterial> overrideMaterial) {

IMaterial matToUse;

if (overrideMaterial.hasValue) {

matToUse = overrideMaterial.value;

}

else {

matToUse = obj.getDefaultMaterial();

}

return matToUse.evalBRDF(...);

}

import material;

float3 shadeObject(

MyObject obj,

Optional<IMaterial> overrideMaterial) {

IMaterial matToUse;

if (overrideMaterial.hasValue) {

matToUse = overrideMaterial.value;

}

else {

matToUse = obj.getDefaultMaterial();

}

return matToUse.evalBRDF(...);

}

Conditional<T, bool flag>

• Compile-time presence/absence; strips

storage and code when false

• public consts act as specialization

params: use a source default or provide

a value when compiling

public struct SimpleMaterial<bool hasNormalMap,

bool hasAlbedoMap> {

Conditional<Texture2D, hasAlbedoMap>

m_albedoMap;

Conditional<Texture2D, hasNormalMap>

m_normalMap;

}

public struct SimpleMaterial<bool hasNormalMap,

bool hasAlbedoMap> {

Conditional<Texture2D, hasAlbedoMap>

m_albedoMap;

Conditional<Texture2D, hasNormalMap>

m_normalMap;

}

// in some other file...

StandardMaterial<true, true> fullMaterial;

StandardMaterial<false, true> simpleMaterial;

// in some other file...

StandardMaterial<true, true> fullMaterial;

StandardMaterial<false, true> simpleMaterial;

fullMaterial contains

m_albedoMap and m_normalMap

simpleMaterial contains only

m_normalMap

Presence Patterns

Shader Parameters & Binding Complexity

Manual Slots vs. Logical Reflection

// myShader_v1.hlsl

[[vk::binding(1, 0)]]

Texture2D g_normalMap : register(t0, space0);

[[vk::binding(2, 0)]]

SamplerState g_sampler : register(s0, space0);

// myShader_v1.hlsl

[[vk::binding(1, 0)]]

Texture2D g_normalMap : register(t0, space0);

[[vk::binding(2, 0)]]

SamplerState g_sampler : register(s0, space0);

layout = myProgram->getLayout();

normalVar =

layout->findEntryByName("g_scene.g_normalMap");

samplerVar =

layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g_normalMapTexture);

myCmdList->BindParameter(samplerVar, g_mySampler);

layout = myProgram->getLayout();

normalVar =

layout->findEntryByName("g_scene.g_normalMap");

samplerVar =

layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g_normalMapTexture);

myCmdList->BindParameter(samplerVar, g_mySampler);

LoadShader("MyShader_v1.hlsl");

myCmdList->SetTexture(1, g_normalMapTexture);

myCmdList->SetSampler(0, g_mySampler);

LoadShader("MyShader_v1.hlsl");

myCmdList->SetTexture(1, g_normalMapTexture);

myCmdList->SetSampler(0, g_mySampler);

// myShader_v2.hlsl

[[vk::binding(3, 2)]]

Texture2D g_normalMap : register(t5, space2);

[[vk::binding(2, 2)]]

SamplerState g_sampler : register(s3, space2);

// myShader_v2.hlsl

[[vk::binding(3, 2)]]

Texture2D g_normalMap : register(t5, space2);

[[vk::binding(2, 2)]]

SamplerState g_sampler : register(s3, space2);

Engine-side code needs to know the

binding points for shader parameters

And breaks if changes aren’t made in parallel

// myShader.slang

struct MyScene

{

Texture2D g_normalMap;

SamplerState g_sampler;

};

ParameterBlock<MyScene> g_scene;

// myShader.slang

struct MyScene

{

Texture2D g_normalMap;

SamplerState g_sampler;

};

ParameterBlock<MyScene> g_scene;

HLSL Slang

// myShader_v1.hlsl

[[vk::binding(1, 0)]]

Texture2D g_normalMap : register(t0, space0);

[[vk::binding(2, 0)]]

SamplerState g_sampler : register(s0, space0);

// myShader_v1.hlsl

[[vk::binding(1, 0)]]

Texture2D g_normalMap : register(t0, space0);

[[vk::binding(2, 0)]]

SamplerState g_sampler : register(s0, space0);

layout = myProgram->getLayout();

normalVar =

layout->findEntryByName("g_scene.g_normalMap");

samplerVar =

layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g_normalMapTexture);

myCmdList->BindParameter(samplerVar, g_mySampler);

layout = myProgram->getLayout();

normalVar =

layout->findEntryByName("g_scene.g_normalMap");

samplerVar =

layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g_normalMapTexture);

myCmdList->BindParameter(samplerVar, g_mySampler);

LoadShader("MyShader_v1.hlsl");

myCmdList->SetTexture(1, g_normalMapTexture);

myCmdList->SetSampler(0, g_mySampler);

LoadShader("MyShader_v1.hlsl");

myCmdList->SetTexture(1, g_normalMapTexture);

myCmdList->SetSampler(0, g_mySampler);

// myShader_v2.hlsl

[[vk::binding(3, 2)]]

Texture2D g_normalMap : register(t5, space2);

[[vk::binding(2, 2)]]

SamplerState g_sampler : register(s3, space2);

// myShader_v2.hlsl

[[vk::binding(3, 2)]]

Texture2D g_normalMap : register(t5, space2);

[[vk::binding(2, 2)]]

SamplerState g_sampler : register(s3, space2);

// myShader.slang

struct MyScene

{

Texture2D g_normalMap;

SamplerState g_sampler;

};

ParameterBlock<MyScene> g_scene;

// myShader.slang

struct MyScene

{

Texture2D g_normalMap;

SamplerState g_sampler;

};

ParameterBlock<MyScene> g_scene;

HLSL Slang

Manual Slots vs. Logical Reflection

layout = myProgram->getLayout();

normalVar =

layout->findEntryByName("g_scene.g_normalMap");

samplerVar =

layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g_normalMapTexture);

myCmdList->BindParameter(samplerVar, g_mySampler);

layout = myProgram->getLayout();

normalVar =

layout->findEntryByName("g_scene.g_normalMap");

samplerVar =

layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g_normalMapTexture);

myCmdList->BindParameter(samplerVar, g_mySampler);

// myShader.slang

struct MyScene

{

Texture2D g_normalMap;

SamplerState g_sampler;

};

ParameterBlock<MyScene> g_scene;

// myShader.slang

struct MyScene

{

Texture2D g_normalMap;

SamplerState g_sampler;

};

ParameterBlock<MyScene> g_scene;

Slang

Group parameters logically in a struct

Wrap in a ParameterBlock

Host-side code queries binding by name

Manual Slots vs. Logical Reflection

A Unified, Composable System

Use a struct to implement

an interface

public interface IBrdf {

float3 eval(float3 n, float3 v, float3 l);

}

public struct Lambertian : IBrdf {

Texture2D g_albedoMap;

float3 g_tint;

public float3 eval(float3 n, float3 v, float3 l) {

float3 albedo = g_albedoMap.Sample(...) * g_tint;

return albedo / 3.14159;

}

}

ParameterBlock<Lambertian> g_lambertianMaterial;

public interface IBrdf {

float3 eval(float3 n, float3 v, float3 l);

}

public struct Lambertian : IBrdf {

Texture2D g_albedoMap;

float3 g_tint;

public float3 eval(float3 n, float3 v, float3 l) {

float3 albedo = g_albedoMap.Sample(...) * g_tint;

return albedo / 3.14159;

}

}

ParameterBlock<Lambertian> g_lambertianMaterial;

…and also in your

ParameterBlock

Automatic Differentiation

Your secret weapon for neural graphics

• Automatically compute exact

derivatives for any function

• No manual gradient derivation

required

• Supports arbitrary control flow and

dynamic dispatch

• Enables any graphics function to

become trainable

SlangPy

Machine Learning Graphics

Shading Languages

Using work done in

the other ecosystem

is extremely difficult

with Automatic Differentiation

SlangPy

Slang Works With Your Favorite Tools
RenderDoc step-through debugging

Follow Slang->SPIR-V->assembly in Nsight

Visual Studio & VSCode Extensions and Language Server

Resources
Find all these details and more at shader-slang.org

Try it out in your browser

try.shader-slang.org

Dive into docs

docs.shader-slang.org

Watch the Neural Shading Course and

other SIGGRAPH Materials

Join the Discord

Watch Slang Videos

khr.io/slangvideos

Check out SlangPy

slangpy.shader-slang.org

https://shader-slang.org
https://shader-slang.org
https://shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org
https://khr.io/slangvideos
https://slangpy.shader-slang.org
https://slangpy.shader-slang.org
https://slangpy.shader-slang.org

	Folie 1: Writing Shaders Today: Complexity Abounds
	Folie 2: Slang: Open-Source and Cross-Platform
	Folie 3: The Slang Developer Community
	Folie 4: Modern Features for Modern Shaders
	Folie 5: Modules
	Folie 6: Modules: Organizing Your Code
	Folie 7: Modules: Organizing Your Code
	Folie 8: Modules: Streamline Compilation
	Folie 9: Modules: Streamline Compilation
	Folie 10: Modules: Streamline Compilation
	Folie 11: Modules: Streamline Compilation
	Folie 12: Specialization with Interfaces & Generics
	Folie 13: Fine-Grained Module API Control
	Folie 14: Fine-Grained Module API Control
	Folie 15: Presence Patterns
	Folie 16: Presence Patterns
	Folie 17: Shader Parameters & Binding Complexity
	Folie 18: Manual Slots vs. Logical Reflection
	Folie 19: HLSL
	Folie 20: Slang
	Folie 21: A Unified, Composable System
	Folie 22: Automatic Differentiation
	Folie 23: SlangPy
	Folie 24: Slang Works With Your Favorite Tools
	Folie 25: Resources

