Writing Shaders Today: Complexity Abounds

» Shader codebases have become incredibly
large & complex

» Developers need to deploy to many
platforms

» Shader combinatorial explosion
 Fragile manual data binding models

» New graphics techniques & neural graphics
discontinuity

v, Graphics Programming Conference, November 18-20, Breda




Slang: Open-Source and Cross-Platform

@R + Y0ikan.
k

GLSL

HLSL ——>fiirectx

Sans &7 Slang 2, 3

HLSL 2018 — ~ NN~ WL > vV
GLSL PyTorch
C (CPU)
CUDA
Optix

v, Graphics Programming Conference, November 18-20, Breda



The Slang Developer Community

. . . Star History
Developer interest continuing to grow!
e 4700+ GitHub Stars, >60 active contributors - Junasltoy s N
e >1000 Discord members, lively discussion w @ Khconosgroup/gllang
threads
R0
K
. . 20l6 2018 2020 2022 2024
Join us on Discord! Date % stac-istory.com

Try it out on the web: https://try.shader-slang.org
See the documentation: https://docs.shader-slang.org

) Graphics Programming Conference, November 18-20, Breda


https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org

Modern Features for Modern Shaders

1 public interface IObject

{ Property
property float position { get; } <«
static Optional<This> makeFromPosition(float p);

Interfaces

}
interface IColoredObject : IObject
Visibility { Optional<T>
Color getColor();
}

struct Particle : IObject

12 internal float position;

13 static Particle makeFromPosition(float p) { return { p }; }
};

15 extension Particle : IColoredObject

{

Color getColor() { return position < @ ? Color.Red : Color.Green; }

19 float computeVelocity<T:I0bject>(T 0@, T ol)

20 {
21 return 0@.position - ol.position;
22}

v, Graphics Programming Conference, November 18-20, Breda




Material
Properties

Camera Effects Post-Processing

myShader.slang

rogramming Conference, November 18-20, Breda



Modules: Organizing Your Code

// material.slang
module material ;<

_— Begin your module definition with module

Vel
public struct Material { Use public declarations to create types, methods
public float4 evalBRDF(float3) P ypes, )

v, A and functions visible to importing modules

{
internal float4 PrivateMethod ) . . ..
1{ /¥ f/a } myFriva em internal declarations are only visible inside the

current module.

private float4 m_someVar;

} If no visibility modifier is provided, all declarations
default to internal

private declarations are only visible inside the
current type

-, Graphics Programming Conference, November 18-20, Breda



Modules: Organizing Your Code

// material.slang // scene.slang
module material,; import material;

public struct Material {
public float4 evalBRDF(float3)

struct Scene {
StructuredBuffer<Material> materials;

{/* ... ¥/ }
internal float4 myPrivateMethod() void compute(float3 wi, float3 wo) {
{/*% ... ¥/ } float4 result =

materials[@].evalBRDF(wi, wo);

materials[@].myPrivateMethod();
Pull in modules with import

Visibility enforcement as you type _ _ _
ERROR: ‘myPrivateMethod’ is not accessible from the current context

v, Graphics Programming Conference, November 18-20, Breda




Modules: Streamline Compilation

#include-style with HLSL, GLSL, MSL

mainShader1.hlsl mainShader2.hlsl

teyx, ureUtils.hlsl

stoneMaterial.hlsl plasterMaterial.hlsl

v, Graphics Programming Conference, November 18-20, Breda



Modules: Streamline Compilation

import-style with Slang

g surfacelntegrator.slang$®

lighting.slang %
disneyBRDF.slang %
woodMaterial.slang ¥

textureUtils.slang 1%

mainShader1.slang ¥

stoneMaterial.slang 4%

v, Graphics Programming Conference, November 18-20, Breda




Modules: Streamline Compilation

import-style with Slang

lighting.slang 4 surfacelntegrator.slang ¥
disneyBRDF.slang & mainShader1.slang
woodMaterial.slang
textureUtils.slang V'

stoneMaterial.slang

plasticMaterial.slang 4

plasterMaterial.slang
o mainShader2.slang

v, Graphics Programming Conference, November 18-20, Breda



Modules: Streamline Compilation

import-style with Slang

surfacelntegrator.slang

disneyBRDF.slang mainShader1.slang

woodMaterial.slang
textureUtils.slang

stoneMaterial.slang

plasticMaterial.slang

plasterMaterial.slang
mainShader2.slang

v, Graphics Programming Conference, November 18-20, Breda



Specialization with Interfaces & Generics

public interface IBrdf {

Interfaces // Required method for evaluating the BRDF
e Define a contract for behavior float3 eval(float3 n, float3 v, float3 1, float3 a);
. . . }
¢ Swap ]mplementatlons without public struct Lambertian : IBrdf {
macros or copy/paste float3 eval(float3 n, float3 v, float3 1, float3 a) {
o Enforce correctness at compile } Vi oe o (GIEREIENEREE CRElis)
time }

public float3 shade<T : IBrdf>(T b, float3 n, float3 v,
Generics float3 1, float3 a) {

return b.eval(n, v, 1, a);

» Reuse algorithms over a )
constraint
. Specialize to concrete code per float3 cl = shade(Lambertian(), n, v, 1, albedo);
float3 c2 = shade(GGX(), n, v, 1, albedo);
use

-, Graphics Programming Conference, November 18-20, Breda




Fine-Grained Module API Control

// material.slang

Properties module material;

* Typed, dedarat]\,/e knobs public interface IMaterial {

(instead of #define toggles) .

property float roughness { get; }

¢ Expose-defaFﬂts- callers set float4 evalBRDF(float3 n, float3 v, float3 1);

them explicitly }

// A simple implementation of the interface

|nterfaces can make propert]es pUbllC struct SimpleMater‘ial : IMaterial {
required

public property float roughness { get { return 0.8; } }
public float4 evalBRDF(float3 n, float3 v, float3 1)
{/* ... ¥/}

v, Graphics Programming Conference, November 18-20, Breda




Fine-Grained Module API Control

// material.slang
Extensions module material;
e Add methods to existing types
without editing original code
« Great for optional features in
separate packages }

public interface IMaterial {
property float roughness { get; }
float4 evalBRDF(float3 n, float3 v, float3 1);

// In some other module..

import material;
extension IMaterial

{
public float3 calcRefract(float3 view, float3 normal)

{/% ... ¥/}

v, Graphics Programming Conference, November 18-20, Breda




Presence Patterns

Optiona1<T> import material;
. ) float3 shadeObject(
* Runtime presence/absence with MyObject obi,

explicit checks Optional<IMaterial> overrideMaterial) {
» Replaces sentinels/bitflags IMaterial matToUse;

if (overrideMaterial.hasValue) {
matToUse = overrideMaterial.value;

}
else {

matToUse = obj.getDefaultMaterial();
}

return matToUse.evalBRDF(...);

v, Graphics Programming Conference, November 18-20, Breda




Presence Patterns

Conditional<T, bool flag) public struct SimpleMaterial<bool hasNormalMap,

e Compile-time presence/absence; strips bool hasAlbedoMap> {
storage and code when false

e public consts act as specialization
params: use a source default or provide
a value when compiling Conditional<Texture2D, hasNormalMap>

Conditional<Texture2D, hasAlbedoMap>
m_albedoMap;

m_normalMap;

fullMaterial contains }

m_albedoMap and m_normalMap
// in some other file...

StandardMaterial<true, true> fullMaterial;

simpleMaterial contains only

StandardMaterial<false, true> simpleMaterial;
m_normalMap /

v, Graphics Programming Conference, November 18-20, Breda




ty

ing Complexi

d

n

Shader Parameters & B

v, Graphics Programming Conference, November 18-20, Breda



Manual Slots vs.

HLSL

// myShader_v2.hlsl

[[vk::binding(3, 2)]1]

Texture2D g_normalMap : register(t5, space2);
[[vk::binding(2, 2)]1]

SamplerState g_sampler : register(s3, space2);

LoadShader("MyShader _vi1.hlsl");

myCmdList->SetTexture(1l, g normalMapTexture);
myCmdList->SetSampler(©, g _mySampler);

Engine-side code needs to know the
binding points for shader parameters

And breaks if changes aren’t made in parallel

b
X

Logical Reflection
Slang

// myShader.slang

struct MyScene

{
Texture2D g _normalMap;
SamplerState g_sampler;

¥
ParameterBlock<MyScene> g _scene;

layout = myProgram->getLayout();

normalVar =
layout->findEntryByName("g_scene.g_normalMap");

samplerVar =
layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g normalMapTexture);
myCmdList->BindParameter(samplerVar, g _mySampler);

v, Graphics Programming Conference, November 18-20, Breda




Manual Slots vs.

HLSL

// myShader_v2.hlsl

[[vk::binding(3, 2)]1]

Texture2D g_normalMap : register(t5, space2);
[[vk::binding(2, 2)]1]

SamplerState g_sampler : register(s3, space2);

LoadShader("MyShader _vi1.hlsl");

myCmdList->SetTexture(1l, g normalMapTexture);
myCmdList->SetSampler(©, g _mySampler);

Logical Reflection
Slang

// myShader.slang

struct MyScene

{
Texture2D g _normalMap;
SamplerState g_sampler;

¥
ParameterBlock<MyScene> g _scene;

layout = myProgram->getLayout();

normalVar =
layout->findEntryByName("g_scene.g_normalMap");

samplerVar =
layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g normalMapTexture);
myCmdList->BindParameter(samplerVar, g _mySampler);

v, Graphics Programming Conference, November 18-20, Breda




Manual Slots vs. Logical Reflection
Slang

Group parameters logically in a struct \ // myShader.slang
struct MyScene

{

Texture2D g _normalMap;

Wrap in a ParameterBlock
SamplerState g_sampler;

}s

ParameterBlock<MyScene> g _scene;
Host-side code queries binding by name
layout = myProgram->getLayout();

normalVar =
layout->findEntryByName("g_scene.g_normalMap");

samplerVar =
layout->findEntryByName("g_scene.g_sampler");

myCmdList->BindParameter(normalVar, g normalMapTexture);
myCmdList->BindParameter(samplerVar, g _mySampler);

v, Graphics Programming Conference, November 18-20, Breda



A Unified, Composable System

. public interface IBrdf {
Use a struct to implement float3 eval(float3 n, float3 v, float3 1);

an interface } \

public struct Lambertian : IBrdf {
Texture2D g_albedoMap;
float3 g_tint;

...and also in your
ParameterBlock public float3 eval(float3 n, float3 v, float3 1) {

float3 albedo = g albedoMap.Sample(...) * g tint;
return albedo / 3.14159;

ParameterBlock<Lambertian> g lambertianMaterial;

v, Graphics Programming Conference, November 18-20, Breda




Automatic Differentiation

Your secret weapon for neural graphics A
« Automatically compute exact
derivatives for any function fwd_diff(eval)(dpL, dpV, dpN);
 No manual gradient derivation

-

-

required

» Supports arbitrary control flow and
dynamic dispatch

« Enables any graphics function to
become trainable

v

-, Graphics Programming Conference, November 18-20, Breda




~

O PyTorch Wéx N

/ Machine Learning \

SlangPy

-

Graphics \

Microsoft

DirectX Wulkan.

CUDA

/—Ien%,.
viIA SlangPy

with Automatic Differentiation

@ puthon’
\ PY

Using work done in
the other ecosystem
is extremely difficult

Shading Languages

v, Graphics Programming Conference, November 18-20, Breda




Slang Works With Your Favorite Tools

RenderDoc step-through debugging

Follow Slang->SPIR-V->assembly in Nsight
.l.l H
; - A EEES
Visual Studio & VSCode Extensions and Language Server

D: > test.slang » @ computeMain

struct MyType

1
2
3 /*¥ returns a value.

4 *f

5 int getValue(int val) {return val * 2;}
6 }

Fd
8 void computeMain{uint3 threadIdx)

g .

e

ul

1
1 ¥

v, Graphics Programming Conference, November 18-20, Breda




Resources

Find all these details and more at shader-slang.org

Try it out in your browser Watch Slang Videos
try.shader-slang.org khr.io/slangvideos
Dive into docs Check out SlangPy
docs.shader-slang.org slangpy.shader-slang.org
Watch the Neural Shading Course and Join the Discord
other SIGGRAPH Materials

28]

-, Graphics Programming Conference, November 18-20, Breda


https://shader-slang.org
https://shader-slang.org
https://shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org
https://docs.shader-slang.org
https://khr.io/slangvideos
https://slangpy.shader-slang.org
https://slangpy.shader-slang.org
https://slangpy.shader-slang.org

	Folie 1: Writing Shaders Today: Complexity Abounds
	Folie 2: Slang: Open-Source and Cross-Platform
	Folie 3: The Slang Developer Community
	Folie 4: Modern Features for Modern Shaders
	Folie 5: Modules
	Folie 6: Modules: Organizing Your Code
	Folie 7: Modules: Organizing Your Code
	Folie 8: Modules: Streamline Compilation
	Folie 9: Modules: Streamline Compilation
	Folie 10: Modules: Streamline Compilation
	Folie 11: Modules: Streamline Compilation
	Folie 12: Specialization with Interfaces & Generics
	Folie 13: Fine-Grained Module API Control
	Folie 14: Fine-Grained Module API Control
	Folie 15: Presence Patterns
	Folie 16: Presence Patterns
	Folie 17: Shader Parameters & Binding Complexity
	Folie 18: Manual Slots vs. Logical Reflection
	Folie 19: HLSL
	Folie 20: Slang
	Folie 21: A Unified, Composable System
	Folie 22: Automatic Differentiation
	Folie 23: SlangPy
	Folie 24: Slang Works With Your Favorite Tools
	Folie 25: Resources

