
How to Decimate

your textures
BCn compression tricks in

Horizon Forbidden West

hugh.malan@guerrilla-games.com

[Nubis picture]

Approximate

Ideal

Picture of long distance shadows

16bpp input >= 4bpp BC1 output

● Requirements

● BC1 overview

● GPU sampling

● RGB to scalar

● Encoder

● Results

GPU sampling of endpoint colors

r<<3 | r>>2 g<<2 | g>>4 b<<3 | b>>2

5-6-5 endpoint color

Expanded to 8-8-8

GPU sampling of interpolated colors on AMD

if (interpolation_mode == FourInterpolatedColors)

{

outColors[0] = color_0; // color_0 and color_1 are RGB888

outColors[1] = color_1;

outColors[2] = ((color_0 * 43) + (color_1 * 21) + IVec3(32, 32, 32)) / 64;

outColors[3] = ((color_0 * 21) + (color_1 * 43) + IVec3(32, 32, 32)) / 64;

}

else // ThreeInterpolatedColorsAndTransparentBlack

{ … }

RGB to scalar requirements

float sampled_value = dot(

EncodedBC1Texture.Sample(uv).rgb,

unpack_constant.xyz

);

RGB to scalar dotproduct constant

float sampled_value = dot(

EncodedBC1Texture.Sample(uv).rgb,

float3(0.96414679, 0.03518212, 0.00067109) // 0.002% max error

);

Encoder - 4x4 input values

Inputs

Encoder - possible endpoint colors and unpacked values

Inputs

Endpoints

Encoder - Low endpoint color

Inputs

Endpoints

Encoder - Possible high endpoint

Inputs

Endpoints

Encoder - Possible high endpoint and interpolated colors

Inputs

Endpoints

Encoder - Encoded value for each input

Inputs

Endpoints

4bpp BC1

16bpp

Reduced cloud rendering time by 30%Reduced cloud rendering time by 30%

[Replace with an image showing green hq heightfield and yellow BC1 heightfield].

4bpp BC1

16bpp

Reduced texture size from 3.1MB to 0.78MBReduced texture size from 3.1MB to 0.78MB

https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/

“[This] level of precision is unlikely to ever matter to anyone.”

Fabian “ryg” Giesen

https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/

Questions?

“GPU BCn decoding”, Fabien Giesen (2021) https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/

“GPU DXT Decompression”, Ignacio Castaño (2009) https://www.ludicon.com/castano/blog/2009/03/gpu-

dxt-decompression/

EXT_texture_compression_dxt1 definition (2008)

https://registry.khronos.org/OpenGL/extensions/EXT/EXT_texture_compression_dxt1.txt

References

https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
https://www.ludicon.com/castano/blog/2009/03/gpu-dxt-decompression/
https://www.ludicon.com/castano/blog/2009/03/gpu-dxt-decompression/
https://www.ludicon.com/castano/blog/2009/03/gpu-dxt-decompression/
https://www.ludicon.com/castano/blog/2009/03/gpu-dxt-decompression/
https://www.ludicon.com/castano/blog/2009/03/gpu-dxt-decompression/
https://registry.khronos.org/OpenGL/extensions/EXT/EXT_texture_compression_dxt1.txt

BONUS SLIDES

/*
16 bit scalar to BC1 encoder. The main entrypoint is:

void sBuildBC1Block(uint64 *outBCBlock, Span<float> inInputData, Vec3 inUnpackDot)

To convert this to your codebase, the following will need to be replaced with your version:

Vec3 - 3D vector, like float3
IVec3 - 3D integer, like int3 or uint3

gAssert
Span<type> - Like std::span

StaticArray<type, integer size> - Fixed size array. A C-style array on the stack, or std::array

*/

/**

@brief BC1 block definition; 64 bits

**/
struct BC1Block

{
uint64 mEndpoint0 : 16; // Bytes 0-1

uint64 mEndpoint1 : 16; // Bytes 2-3

uint64 mIndices : 32; // Bytes 4-7
};

static_assert(sizeof(BC1Block) == sizeof(uint64));

/**
@brief BC1 interpolation mode

**/
enum class BC1InterpolationMode : int
{

FourIntermediate,
ThreeIntermediateWithZero

};

/**

@brief Extend a 16-bit/RGB565 color to 24-bit/RGB888. Replicates GPU behaviour.
**/
static IVec3 sConvert565To888(uint16 in565Color)
{

uint channel_r = (in565Color >> 11) & 31;

uint channel_g = (in565Color >> 5) & 63;
uint channel_b = (in565Color) & 31;

gAssert((channel_r < 32) && (channel_g < 64) && (channel_b < 32));
return IVec3(

(channel_r << 3) | (channel_r >> 2),

(channel_g << 2) | (channel_g >> 4),
(channel_b << 3) | (channel_b >> 2));

}

/**
@brief Unpack an RGB888 to a scalar.

Factored out into shared code, because doing the dotproduct and /255 in different orders causes slight differences...
**/

static float sUnpackRGB888ToScalar(IVec3 inRGB888, Vec3 inUnpackDot)
{

Vec3 color_unit = inRGB888.ToVec3() / 255.0f;
float unpacked_value = color_unit.Dot(inUnpackDot);
return unpacked_value;

}

/**

@brief Unpack a 16-bit/RGB565 color to a float.
**/
static float sEvaluateEndpointColor(uint16 inColor, Vec3 inUnpackDot)
{

return sUnpackRGB888ToScalar(sConvert565To888(inColor), inUnpackDot);

}

/**

@brief Find the four interpolated color for a BC1 block, replicating the values sampled by AMD GPUs.
Input endpoint colors are expected to be 16-bit RGB565.
Output colors are RGB888.

Based on https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/

**/
static void sBuildInterpolatedColors_AMD(Span<IVec3> outColors, uint16 inEndpointColor0, uint16 inEndpointColor1)
{

gAssert(outColors.Length() == 4);

IVec3 color_0 = sConvert565To888(inEndpointColor0);
IVec3 color_1 = sConvert565To888(inEndpointColor1);

BC1InterpolationMode interpolation_mode = (inEndpointColor0 > inEndpointColor1) ? BC1InterpolationMode::FourIntermediate : BC1InterpolationMode::ThreeIntermediateWithZero;

if (interpolation_mode == BC1InterpolationMode::FourIntermediate)
{

outColors[0] = color_0;
outColors[1] = color_1;
outColors[2] = ((color_0 * 43) + (color_1 * 21) + IVec3(32, 32, 32)) / 64;

outColors[3] = ((color_0 * 21) + (color_1 * 43) + IVec3(32, 32, 32)) / 64;
}
else if (interpolation_mode == BC1InterpolationMode::ThreeIntermediateWithZero)
{

outColors[0] = color_0;

outColors[1] = color_1;
outColors[2] = (color_0 + color_1 + IVec3(1, 1, 1)) / 2;
outColors[3] = IVec3(0, 0, 0); // We're ignoring alpha

}
}

/**

@brief Find the four interpolated color for a BC1 block, replicating the values sampled by nVidia GPUs.

Input endpoint colors are expected to be 16-bit RGB565.
Output colors are RGB888.

Based on https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/

**/
static void sBuildInterpolatedColors_nVidia(Span<IVec3> outColors, uint16 inEndpointColor0, uint16 inEndpointColor1)

{

gAssert(outColors.Length() == 4);

IVec3 color_0 = sConvert565To888(inEndpointColor0);
IVec3 color_1 = sConvert565To888(inEndpointColor1);

// Extract 5-bit red and blue colors from input RGB565

uint channel_0_r = (inEndpointColor0 >> 11) & 31;
uint channel_0_b = (inEndpointColor0) & 31;

uint channel_1_r = (inEndpointColor1 >> 11) & 31;

uint channel_1_b = (inEndpointColor1) & 31;

BC1InterpolationMode interpolation_mode = (inEndpointColor0 > inEndpointColor1) ? BC1InterpolationMode::FourIntermediate : BC1InterpolationMode::ThreeIntermediateWithZero;

if (interpolation_mode == BC1InterpolationMode::FourIntermediate)

{

outColors[0] = color_0;
outColors[1] = color_1;

// Red and blue channels: input is 5-bit, output is 8 bit

outColors[2].mX = ((2 * channel_0_r + channel_1_r) * 22) >> 3;

outColors[2].mZ = ((2 * channel_0_b + channel_1_b) * 22) >> 3;

outColors[3].mX = ((channel_0_r + 2 * channel_1_r) * 22) >> 3;
outColors[3].mZ = ((channel_0_b + 2 * channel_1_b) * 22) >> 3;

// Green channel: input is 8 bit

int diff = color_1.mY - color_0.mY;
int scaled_diff = 80 * diff + (diff >> 2);

outColors[2].mY = color_0.mY + ((128 + scaled_diff) >> 8);

outColors[3].mY = color_1.mY + ((128 - scaled_diff) >> 8);

}

else if (interpolation_mode == BC1InterpolationMode::ThreeIntermediateWithZero)
{

outColors[0] = color_0;
outColors[1] = color_1;

// Red and blue channels: input is 5-bit, output is 8 bit
outColors[2].mX = ((channel_0_r + channel_1_r) * 33) >> 3;

outColors[2].mZ = ((channel_0_b + channel_1_b) * 33) >> 3;

// Green channel: input is 8 bit

int diff = color_1.mY - color_0.mY;
int scaled_diff = 128 * diff + (diff >> 2);

outColors[2].mY = color_0.mY + ((128 * scaled_diff) >> 8);

outColors[3] = IVec3(0, 0, 0); // We're ignoring alpha

}
}

/**
@brief Find the four interpolated color for a BC1 block, replicating the values sampled by Intel GPUs.

Input endpoint colors are expected to be 16-bit RGB565.
Output colors are RGB888.

Based on https://fgiesen.wordpress.com/2021/10/04/gpu-bcn-decoding/
**/

static void sBuildInterpolatedColors_Intel(Span<IVec3> outColors, uint16 inEndpointColor0, uint16 inEndpointColor1)
{

gAssert(outColors.Length() == 4);

IVec3 color_0 = sConvert565To888(inEndpointColor0);

IVec3 color_1 = sConvert565To888(inEndpointColor1);

BC1InterpolationMode interpolation_mode = (inEndpointColor0 > inEndpointColor1) ? BC1InterpolationMode::FourIntermediate : BC1InterpolationMode::ThreeIntermediateWithZero;

if (interpolation_mode == BC1InterpolationMode::FourIntermediate)
{

outColors[0] = color_0;
outColors[1] = color_1;

outColors[2] = ((color_0 * 171) + (color_1 * 85) + IVec3(128, 128, 128)) / 256;

outColors[3] = ((color_0 * 85) + (color_1 * 171) + IVec3(128, 128, 128)) / 256;
}

else if (interpolation_mode == BC1InterpolationMode::ThreeIntermediateWithZero)
{

outColors[0] = color_0;

outColors[1] = color_1;
outColors[2] = ((color_0 * 128) + (color_1 * 128) + IVec3(128, 128, 128)) / 256;

outColors[3] = IVec3(0, 0, 0); // We're ignoring alpha
}

}

/**

@brief Given a 4x4 list of input values, and a pair of endpoint colors, build a final 64-bit BC1 block

Input values are expected to be in [0, 1].
Outputs the error and the BC block

**/

static void sBuildBC1BlockAndEvaluateError(pFloat outNetError, uint64 *outBCBlock,
Span<float> inInputData, uint16 inEndpointColorLo, uint16 inEndpointColorHi, Vec3 inUnpackDot)

{
gAssert(inInputData.Length() == 16);

// Declare and initialize the block
BC1Block block = {};

// Set endpoints.

block.mEndpoint0 = gMax(inEndpointColorLo, inEndpointColorHi);

block.mEndpoint1 = gMin(inEndpointColorLo, inEndpointColorHi);
gAssert(block.mEndpoint0 > block.mEndpoint1); // Endpoint 0 is expected to be greater than 1 to select 4-color interpolation

// Find the four interpolated colors

StaticArray<IVec3, 4> interpolated_colors_amd;

sBuildInterpolatedColors_AMD(interpolated_colors_amd, block.mEndpoint0, block.mEndpoint1);

StaticArray<IVec3, 4> interpolated_colors_nvidia;
sBuildInterpolatedColors_nVidia(interpolated_colors_nvidia, block.mEndpoint0, block.mEndpoint1);

StaticArray<IVec3, 4> interpolated_colors_intel;
sBuildInterpolatedColors_Intel(interpolated_colors_intel, block.mEndpoint0, block.mEndpoint1);

// Find the four interpolated values. Work with the maximum possible value, to ensure the GPU sampled value is <= the source value on all platforms
StaticArray<float, 4> interpolated_values;

for (int i = 0; i < 4; i++)
interpolated_values[i] = gMax(

sUnpackRGB888ToScalar(interpolated_colors_amd[i], inUnpackDot),
sUnpackRGB888ToScalar(interpolated_colors_nvidia[i], inUnpackDot),

sUnpackRGB888ToScalar(interpolated_colors_intel[i], inUnpackDot));

// Choose the 2-bit index for each of the 4x4 values

float net_error = 0.0f;
for (int source_index = 0; source_index < 16; source_index++)

{

float source_value = inInputData[source_index];

float least_error = 1e10f;
int best_interpolated_index = -1;

for (int i = 0; i < 4; i++)

{
float delta = source_value - interpolated_values[i];

if ((delta >= 0.0f) && (delta < least_error))
{

// Interpolated value is lower than source, and improves error

least_error = delta;
best_interpolated_index = i;

}

}

gAssert(best_interpolated_index >= 0); // Verify that we found an interpolated value that meets our requirements

net_error += least_error * least_error; // Accumulate squared error

block.mIndices |= uint64(best_interpolated_index) << (source_index * 2);

}

*outNetError = net_error;
*outBCBlock = *(uint64*)█

}

/**

@brief Find the highest 16-bit endpoint color that's <= the input value.
This will quickly find a close approximation, but it's possible that it's not the best.

A lookup table may be better ...

**/
static uint16 sFindEndpointColor(float inValue, Vec3 inUnpackDot)

{
gAssert((inUnpackDot.mX > inUnpackDot.mY) && (inUnpackDot.mY > inUnpackDot.mZ), "Expecting red is most significant and blue is least."); // The code below sets up the components in order from most to least significant.

uint16 endpoint_color = 0;

for (int r_step = 16; r_step > 0; r_step /= 2) // R is in [0, 31]

{
uint16 hypothetical_endpoint_color = endpoint_color + (r_step << 11);

if (sEvaluateEndpointColor(hypothetical_endpoint_color, inUnpackDot) <= inValue)
endpoint_color = hypothetical_endpoint_color;

}

for (int g_step = 32; g_step > 0; g_step /= 2) // G is in [0, 63]

{
uint16 hypothetical_endpoint_color = endpoint_color + (g_step << 5);
if (sEvaluateEndpointColor(hypothetical_endpoint_color, inUnpackDot) <= inValue)

endpoint_color = hypothetical_endpoint_color;

}

for (int b_step = 16; b_step > 0; b_step /= 2) // B is in [0, 31]
{

uint16 hypothetical_endpoint_color = endpoint_color + b_step;

if (sEvaluateEndpointColor(hypothetical_endpoint_color, inUnpackDot) <= inValue)

endpoint_color = hypothetical_endpoint_color;

}
return endpoint_color;

}

/**
@brief BC1 block compression entrypoint. Input is a 4x4 set of values in [0, 1]; output is a 64-bit BC1 block.

A good value for inUnpackDot is (0.96414679f, 0.03518212f, 0.00067109f).

Searches different endpoint choices to find the encoding with least error for inInputData.
This implementation is best suited to input values that cover a relatively small range of the domain - such as when compressing smooth heightfields and distance fields.
It may not give good results with other data.

**/

static void sBuildBC1Block(uint64 *outBCBlock, Span<float> inInputData, Vec3 inUnpackDot)

{
gAssert(inInputData.Length() == 16);

// Find minimum and maximum input value
FRange input_value_range(+1e10f, -1e10f);

for (int i = 0; i < inInputData.Length(); i++)

input_value_range.Encapsulate(inInputData[i]);

gAssert((input_value_range.GetMin() >= 0.0f) && (input_value_range.GetMax() <= 1.0f)); // Input values are expected to be in [0, 1]!

// Find 16-bit endpoints. The two should be in order, and not equal.

uint16 endpoint_for_range_min = gMin(sFindEndpointColor(input_value_range.GetMin(), inUnpackDot), 65535 - 1); // endpoint_for_range_max>min, so min can't be 65535

uint16 endpoint_for_range_max = gMax(sFindEndpointColor(input_value_range.GetMax(), inUnpackDot), endpoint_for_range_min + 1);
gAssert(endpoint_for_range_min < endpoint_for_range_max);

float least_error = 1e10f;

uint64 best_bc_block = 0;

for (uint hypothetical_endpoint_hi = endpoint_for_range_min + 1; hypothetical_endpoint_hi <= endpoint_for_range_max; hypothetical_endpoint_hi++)

{

float curr_error = 1e10f;
uint64 curr_bc_block;

sBuildBC1BlockAndEvaluateError(&curr_error, &curr_bc_block, inInputData, endpoint_for_range_min, hypothetical_endpoint_hi, inUnpackDot);

if (curr_error < least_error)

{

least_error = curr_error;
best_bc_block = curr_bc_block;

}

}

*outBCBlock = best_bc_block;

}

Implementation

Failure cases with the basic endpoint search

Bilinear sampling

R=3

G=9

R=4

G=0

BC5

	Folie 1: How to Decimate your textures
	Folie 2: [Nubis picture]
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10: Picture of long distance shadows
	Folie 11: 16bpp input >= 4bpp BC1 output
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21: GPU sampling of endpoint colors
	Folie 22: GPU sampling of interpolated colors on AMD
	Folie 23: RGB to scalar requirements
	Folie 24: RGB to scalar dotproduct constant
	Folie 25: Encoder - 4x4 input values
	Folie 26: Encoder - possible endpoint colors and unpacked values
	Folie 27: Encoder - Low endpoint color
	Folie 28: Encoder - Possible high endpoint
	Folie 29: Encoder - Possible high endpoint and interpolated colors
	Folie 30: Encoder - Encoded value for each input
	Folie 31
	Folie 32
	Folie 33
	Folie 34: Questions?
	Folie 35: References
	Folie 36: BONUS SLIDES
	Folie 37: Implementation
	Folie 38: Failure cases with the basic endpoint search
	Folie 39: Bilinear sampling
	Folie 40: BC5

