
Lukas Feller

• Graphics Programmer

• Last year Fog, this year VFX :)

Enshrouded VFX System

• Existing system showed its age

• Entirely new VFX system

• Designed in close collaboration with the VFX artists

Enshrouded VFX System

• Fully GPU driven
• Natural choice nowadays

• Enshrouded has a GPU driven renderer

• Reuse data which is on the GPU already

Enshrouded VFX System

• Standard HLSL for scripting
• Custom scripting language was a maintenance & support burden

• Well known

• Lots of existing resources & tooling

• Maximum freedom for the artist

• Freely import Textures & Meshes
• From Houdini, EmberGen & others

Overview

• Particles
• Define behavior

• Effects
• Combine particles

• Parameterize

Particle
Particle Particle

Effect Effect

Particle
Particle Particle

Effect Effect

Particle

• State
• Persistent

• Parameters
• Evaluated every frame

• HLSL code
• Single function which is executed once per frame per particle

Particle
Particle Particle

Effect Effect

Particle Data

• State, Parameters

• Types:
• {Float,Int,UInt,Bool}{,2,3,4}

• Model, Mesh, Image, Sound

• Emitter

Particle
Particle Particle

Effect Effect

Particle Code

• Single HLSL function
• Called once per frame per particle
• Extensive API to sample data and generate output
• Return value: still alive?

bool updateParticle(
inout VfxParticleState state,
VfxParticleParameters parameters,
VfxEffectData effect,
VfxEngineData engine,
bool isNew

)

• Generated HLSL structs for state & parameters

struct VfxParticleState
{

float timer;
float age;
float ageNormalized;
float alpha;
float brightness;
…

Particle
Particle Particle

Effect Effect

Overview

• Particles
• Define behavior

• Effects
• Combine particles

• Parameterize

Particle
Particle Particle

Effect Effect

Particle
Particle Particle

Effect Effect

Effect Data

• Instantiated by the game for a VFX

• Hierarchy of particles
• Parents can spawn children

• Defines order of execution

• Define values or expressions for particle parameters

Particle
Particle Particle

Effect Effect

Particle
Particle Particle

Effect Effect

Effect Data
VfxDefinition

VfxNode (Particle)

VfxParameterExpression

Effect Data

• Effect parameters
• Arithmetic and resource types

• Can be set/updated by gameplay code

• Available in parameter expressions

• Sourced from a global list of all effect parameters
• Game code is independent of the configured effect

Particle
Particle Particle

Effect Effect

Particle
Particle Particle

Effect Effect

Effect Data
VfxDefinition

VfxEffectParameter

VfxNode (Particle)

VfxParameterExpression

Video

Resource Format

• VfxResource
• VfxParticleResource (1..*)

• Compute shader

• Storage buffer
• Patch points (meshes, images, sounds)

• Particle state size

• Particle hierarchy

• Effect parameters data & layout

Runtime Data

• Instance
• Parameters

• Particle chunk
• Compute pipeline

• State buffer

• Active indices list (2x for ping-pong)

• Free indices list

• Capacity: max particle count

• Pass allocation offsets via push constants

Execution

• Most simple approach

• One dispatch per particle per instance

• Group count from max particle count

• Single descriptor set for everything

• Push constants per dispatch
• Effect parameters, parameter values, particle state array, …

• Breadth-first over all instances, sorted by pipeline
• Just one barrier in between hierarchy levels

RX 480:

Obvious Optimizations

• Many threads don’t operate on active particles and exit early
• Compute group count from active particle count (instead of maximum)

• Execute multiple particle chunks in one dispatch
• From one effect

• From multiple instances

Shader code

void cs_main(uint3 dispatchId : SV_DispatchThreadID)

{

// ...

if(dispatchId.x >= particleCount) return;

s_particleIndex = g_dataBuffer.Load(s_oldActiveIndicesOffset + dispatchId.x * 4);

// ...

const VfxEffectData effect = fillVfxEffectData(s_effectParameters);

VfxParticleState particle = unpackParticleState(s_particleState);

const VfxParticleParameters parameters = evaluateParameters(particle, effect, engine);

const bool isAlive = updateParticle(particle, parameters, effect, engine, isNew);

if(isAlive) { /* pack & store state, append to new active list */ }

else { /* append to free list */ }

}

Generated Code

VfxParticleParameters evaluateParameters(

VfxParticleTypeParameterBuffer parameterBuffer, VfxParticleState state,

VfxEffectData effect, VfxEngineData engine)

{

VfxParticleParameters parameters;

parameters.ignore_isInWater = effect.debug_ignore_isInWater;

parameters.isAdditive.x = getX(parameterBuffer.isAdditive);

parameters.lightMode = parameterBuffer.lightMode;

parameters.timerInitial = parameterBuffer.timerInitial;

parameters.timerUpdate = parameterBuffer.timerUpdate;

parameters.edgeFadeOutFactor = parameterBuffer.edgeFadeOutFactor;

parameters.depthFadeDistance = parameterBuffer.depthFadeDistance;

parameters.alphaInitial = 0.3 * random_range(0.5, 1);

// ...

return parameters;

}

Particle API

• Draw
• Meshes
• Models
• Point lights
• Decals
• Water
• Foliage displacement
• Fog
• Sound
No retained state
Supports multiple draws per update

• Debug Draw

• Sample
• Images
• Fog
• Fog surface
• Water
• Water features
• Local heightmap
• World SDF
• Meshes

• Random [PCG 2014]
• Spawn Particle
• … and many more

Next Slide

Previous transform via
hashmap (for now) for

motion vectors

Random points from
pre-process, see later

Read back on CPU

Draw Mesh API
struct TransparentDrawParameters
{

float3 position;
Quaternion orientation;
float3 scale;
GpuCombinedImage2D image;
GpuCombinedImage2D normals;
float3 color;
float alpha;
float metallic;
float roughness;
float reflectance;
float2 uvOffset;
float2 uvScale;
UvDistortion uvDistortion;
float depthFadeDistance;
float edgeFadeOutFactor;
AlphaClip alphaClip;
int vertexAlphaMode;
bool isAdditive;
bool discardInsideWater;
bool discardOutsideWater;
bool depthFadeOnWater;
VfxSortParameters sort;
uint lightMode;
float exposureCorrectionFactor;
Flipbook flipbook;

};

void drawTransparentMesh(
VfxMesh mesh,
TransparentDrawParameters parameters

)

enum VfxSortType
{

None,
YoungestFirst,
OldestFirst,
DistanceToNearPlane,
DistanceToCamera,
Custom,

};
struct VfxSortParameters
{

VfxSortType type;
float offset;

};

Draw Mesh Implementation

• Sort all draws by sort key using radix sort

• Write new index buffers
• For above & below water

• Single draw call for each pass

31-16 15-0

Instance index Vertex index

Surface Points

• Water: CPU
• Waterfalls, splashes

• Fog: GPU
• Sample SDF

• One thread per Voxel

• If surface: Spawn point with hash
offset

• Hash map to track new points

• VFX: Point list
• Spawn particles at points

Video

Spawn Particle API

• Spawn parameters defined via data

Spawn_Spawner spawn;

spawn.position = position + (rand3f()*2-1) * radius;

spawnParticle(state, spawn);

bool updateParticle(inout VfxParticleState state,

VfxParticleParameters parameters, VfxEffectData effect,

VfxEngineData engine, bool isNew)

{

if(!effect.isActive)

{

return false;

}

const uint targetSpawnCount = effect.age / parameters.spawnRate;

const uint spawnCount = min(targetSpawnCount - state.spawnCount, 4);

for(uint spawnIndex = 0u; spawnIndex < spawnCount; ++spawnIndex)

{

Spawn_Spawner spawn;

spawn.position = effect.position + (rand3f()*2-1) * parameters.randomSpawnRadius;

spawnParticle(state, spawn);

}

state.spawnCount = targetSpawnCount;

return true;

}

bool updateParticle(inout VfxParticleState state,

VfxParticleParameters parameters, VfxEffectData effect,

VfxEngineData engine, bool isNew)

{

if(isNew)

{

const VfxSound sound = parameters.sound;

playSound(state.position, sound);

}

drawDebugLine(effect.position, state.position, 1.0);

drawDebugCross(state.position, 1.0, 1.0);

state.age += engine.fixedTimeStep;

if(state.age > 1.0)

{

return false;

}

return true;

}

Video

Video

Video

Video

Video

Conclusion

• Great results

• Technical artistry as written in the books

• No coding support from graphics programmers needed

• Many feature requirements, but seldom blocks

• Many small dispatches are fast

• But…

Issues

• Occasional NaNs
• Checks in the API

• GPU crashes and hangs
• Unbounded loops

• Find and fix
• Clamp delta-time
• Maybe add better API/helpers

• Invalid descriptors
• Type safety
• Defensive API

• Uninitialized variables remain a
problem

• Shader compilers struggle

• Bad dependencies in the asset
build

• But there’s more…

Some numbers

• 376 Particles

• 1689 Vfx definitions

• 16519 Vfx nodes

• 30+ Minutes runtime compilation

Can you spot the issue?

A little anecdote (RTX 2070)

1,5 GB for VFX pipelines!!!

VK_EXT_memory_budget vkAllocateMemory

8,4 GB 5,5 GB +2,9 GB

-VFX 6,9 GB 〃

Memory Issues

• Too many pipelines

• Large pipelines

Other: 711

VFX: 6787

Pipeline count (approx.)

Large shader binaries (RTX 2070)

• VK_KHR_pipeline_executable_properties

• “Binary Size”

• ∑ = 761 MB

• Largest pipeline: 489 KB

Inlining

if(floor(state.modelIndex) == 0)
drawModel(parameters.model_0, drawParams);

else if(floor(state.modelIndex) == 1)
drawModel(parameters.model_1, drawParams);

else if(floor(state.modelIndex) == 2)
drawModel(parameters.model_2, drawParams);

else if(floor(state.modelIndex) == 3)
drawModel(parameters.model_3, drawParams);

else if(floor(state.modelIndex) == 4)
drawModel(parameters.model_4, drawParams);

else if(floor(state.modelIndex) == 5)
drawModel(parameters.model_5, drawParams);

else if(floor(state.modelIndex) == 6)
drawModel(parameters.model_6, drawParams);

else if(floor(state.modelIndex) == 7)
drawModel(parameters.model_7, drawParams);

Inlining

GpuModel model;

if(floor(state.modelIndex) == 0)
model = parameters.model_0;

else if(floor(state.modelIndex) == 1)
model = parameters.model_1;

else if(floor(state.modelIndex) == 2)
model = parameters.model_2;

else if(floor(state.modelIndex) == 3)
model = parameters.model_3;

else if(floor(state.modelIndex) == 4)
model = parameters.model_4;

else if(floor(state.modelIndex) == 5)
model = parameters.model_5;

else if(floor(state.modelIndex) == 6)
model = parameters.model_6;

else if(floor(state.modelIndex) == 7)
model = parameters.model_7;

drawModel(model, drawParams);

• Saved 60s offline compile time
on one console platform

• Other patterns:
• Procedural noise

• Gradient calculations thereof

• Replaced with noise texture

Inlining

• Tried [noinline]

• Maps to OpFunction/OpFunctionCall

• Unstable

Large amount of pipelines

VfxParticleParameters evaluateParameters(
VfxParticleTypeParameterBuffer parameterBuffer,
VfxParticleState state, VfxEffectData effect, VfxEngineData engine)

{
VfxParticleParameters parameters;
parameters.ignore_isInWater = effect.debug_ignore_isInWater;
parameters.isAdditive.x = getX(parameterBuffer.isAdditive);
parameters.lightMode = parameterBuffer.lightMode;
parameters.timerInitial = parameterBuffer.timerInitial;
parameters.timerUpdate = parameterBuffer.timerUpdate;
parameters.edgeFadeOutFactor = parameterBuffer.edgeFadeOutFactor;
parameters.depthFadeDistance = parameterBuffer.depthFadeDistance;
parameters.alphaInitial = 0.3 * random_range(0.5, 1);
// ...
return parameters;

}

Failed: Expressions as simple data

• Collect all expressions per particle

• Replace with expression index

• Shaders became too large and unstable

WIP: Data driven evaluation of expressions

• Get rid of VfxNode -> Code
dependency

• Parse HLSL expression

• Simplify as data

• VM is too general

• Parameterize common
expressions

• Data driven variable reads

• Use GS memory to get rid of
inlining

0.2 * random_range(0.3, 1)
0.2 * random_range(0.7, 1)
0.5 * random_range(0.7, 1)
1 * random_range(0.1, 1)
1 * random_range(0.2, 1)
1 * random_range(0.3, 1)
1 * random_range(0.5, 1)
1 * random_range(0.7, 1)
1 * random_range(0.8, 1)
1.2 * random_range(0.2, 1)

=> $0 * random_range($1, $2)

Conclusion Pt. 2

• Artists are not graphics programmers
• Unusual shader code

• Probably should go through reviews…

• GPUs are not really CPUs
• Be aware of code that looks nice but will execute horribly

• Shader permutations can still be problematic
• Be aware of your dependencies

• An uber shader is not always the solution

Thank you!

References

• [PCG 2014] Melissa E. O'Neill, PCG: A Family of Simple Fast Space-
Efficient Statistically Good Algorithms for Random Number
Generation

	Folie 1: Lukas Feller
	Folie 2
	Folie 3: Enshrouded VFX System
	Folie 4: Enshrouded VFX System
	Folie 5: Enshrouded VFX System
	Folie 6: Overview
	Folie 7: Particle
	Folie 8: Particle Data
	Folie 9: Particle Code
	Folie 10: Overview
	Folie 11: Effect Data
	Folie 12: Effect Data
	Folie 13: Effect Data
	Folie 14: Effect Data
	Folie 15: Video
	Folie 16: Resource Format
	Folie 17: Runtime Data
	Folie 18: Execution
	Folie 19
	Folie 20
	Folie 21: Obvious Optimizations
	Folie 22: Shader code
	Folie 23: Generated Code
	Folie 24: Particle API
	Folie 25: Draw Mesh API
	Folie 26: Draw Mesh Implementation
	Folie 27: Surface Points
	Folie 28: Video
	Folie 29: Spawn Particle API
	Folie 30
	Folie 31
	Folie 32: Video
	Folie 33: Video
	Folie 34: Video
	Folie 35: Video
	Folie 36: Video
	Folie 37: Conclusion
	Folie 38: Issues
	Folie 39: Some numbers
	Folie 40: Can you spot the issue?
	Folie 42: A little anecdote (RTX 2070)
	Folie 43: Memory Issues
	Folie 44: Large shader binaries (RTX 2070)
	Folie 45: Inlining
	Folie 46: Inlining
	Folie 47: Inlining
	Folie 48: Large amount of pipelines
	Folie 49: Failed: Expressions as simple data
	Folie 50: WIP: Data driven evaluation of expressions
	Folie 51: Conclusion Pt. 2
	Folie 52: Thank you!
	Folie 53: References

