Lukas Feller

* Graphics Programmer
* Last year Fog, this year VFX :)

Julien Koenen
Technical Director
@ Keen Games

) Graphics Programming Conference, November 18-20, Breda

025

Breda

ing Conference, November 18-20,

) Graphics Programm

Enshrouded VFX System

* Existing system showed its age
* Entirely new VFX system
* Designed in close collaboration with the VFX artists

) Graphics Programming Conference, November 18-20, Breda

Enshrouded VFX System

* Fully GPU driven
* Natural choice nowadays
* Enshrouded has a GPU driven renderer
* Reuse data which is on the GPU already

) Graphics Programming Conference, November 18-20, Breda

Enshrouded VFX System

e Standard HLSL for scripting
e Custom scripting language was a maintenance & support burden
* Well known
 Lots of existing resources & tooling
 Maximum freedom for the artist

* Freely import Textures & Meshes
* From Houdini, EmberGen & others

) Graphics Programming Conference, November 18-20, Breda

Overview

* Particles
* Define behavior Particle FEIIEE

e Effects

 Combine particles
* Parameterize

. Graphics Programming Conference, November 18-20, Breda

Particle -
Particle Particle

Particle

e State
* Persistent

* Parameters
* Evaluated every frame

* HLSL code
 Single function which is executed once per frame per particle

) Graphics Programming Conference, November 18-20, Breda

Particle Data - —

v p_water_bubbles
ignore_isinWater
isAdditive

* State, Parameters lightMode

timer

* Types: age

ageNormalized

* {Float,Int,UInt,Bool}{,2,3,4} timeninitial

timerUpdate

* Model, Mesh, Image, Sound et deiteainr
i depthFadeDi

* Emitter ar::ﬂ adeDistance
alphalnitial

alphalpdate
brightness
brightnessinitial
brightnessUpdate

) Graphics Programming Conference, November 18-20, Breda

Particle

Particle Particle

v particle_test_fog_emitter.vfx hlsl
v particle_test_fog_emitter

v Spawner
position
orientation
randomSpawnRadius
spawnRate
spawnRateTime

Particle Code

* Single HLSL function
* Called once per frame per particle
* Extensive APl to sample data and generate output
e Return value: still alive?

Particle

Particle Particle

bool updateParticle(
inout VfxParticleState state,
VfxParticleParameters parameters,
VfxEffectData effect,
VfxEngineData engine,
bool isNew

)

struct VfxParticleState

{

float
float
float
float
float

timer;

age;
ageNormalized;
alpha;
brightness;

e Generated HLSL structs for state & parameters ——

) Graphics Programming Conference, November 18-20, Breda

Overview

* Particles
* Define behavior Particle FEHEIE

e Effects

 Combine particles
* Parameterize

. Graphics Programming Conference, November 18-20, Breda

Effect Data

* Instantiated by the game for a VFX

e Hierarchy of particles
e Parents can spawn children
* Defines order of execution

* Define values or expressions for particle parameters

) Graphics Programming Conference, November 18-20, Breda

Enabled: [@)
Effe Ct D a ta Particle: & p_water_bubbles

Max Particle Count: 512
1'l Vix_fishin E_ZDI'IE' foDefinition ignore_isinWater effect.debug_ignore_isinWater r 4
_test_parameters EREE 7 >

debug_draw lightMode 1
debug_ignore_isinWater timer'"":al it :

: timerUpdate 1.0000
EZ:ES:E;:EE:S?: edgeFadeOutFactor 0.1000 P
) ~debug draw bounding box ® depthFadeDistance 0.0500 V4
> Erie . alphalnitial 0.3 * random_range(0.5, 1) E -
) fish VfxNode (PaEUCIE) alphaUpdate 1.0000 P4
. watar. hubbles brightnessinitial 1.0000 4
—_H_J : brightnessUpdatz 1.0000 r
spawnBurstl_count_expression o ———————— —
L e e E
vl_partlcle - . image & vfx_water_bubble_animated | #
alphal?ltlai_expmﬁmn ; distortionimage & vix_noise_liquid_tile_uv_disto| #
farceSImplexFrequenq_exprexmn lifetimelnitial 2.5 * over(CurvePowerinConvex(ra| #
forceSimplexStrength_expression iUt —— ’
pnsltllunImtlal_expressmn : waterRippleEnabled|nitial rand1f() < 0.1 rd
sttt/ f X ParameterExpressionly 0.1000 ’
velocityConeDirection_expression i T S T
velocityConeSpeed_expression
spawnRate_expression p ates

) Graphics Programming Conference, November 18-20, Breda

Effect Data

* Effect parameters
e Arithmetic and resource types
* Can be set/updated by gameplay code
* Available in parameter expressions

* Sourced from a global list of all effect parameters
* Game code is independent of the configured effect

) Graphics Programming Conference, November 18-20, Breda

Enabled: [@)
Effe Ct D a ta Particle: & p_water_bubbles v o
Max Particle Count:
v Ciitshnezone) VfxDefinition o, Eniater
_test_parameters Eilellis
debug_draw V4
: . timerinitial 0.0000 4
debug_ignore_isinWater | y/fyEffectParameter R — »
bounding_box_max } pHmempaae o AU
bounding_box_min edgeFadeQutFactor 0.1000 P
) - debug_d_raw_houndingm ® depthFadeDistance 0.0500 V4
> ;Frcle - alphalnitial 0.3 * random_range(0.5, 1) E -
) fish VfxNode (PaEUCIE) alphaUpdate 1.0000 P4
watar. hubbles brightnessinitial 1.0000 4
‘ f—
* ; brightnessUpda‘r’, 1.0000 ,
spawnBurstl_count_expression e P00 100 100,100 5 ,
. coloriniti=t (1.00, 1.00, 1.00, 1.00)
- Spawn'ir_fxpresmﬂn co'urUpdate (1.00, 1.00, 1.00, 1.00) v &
vl particle
Iohalnitial . image & vfx_water_bubble_animated | #
d dinitial_exprassion
f P SimplexE e ; distortionimage & vix_noise_liquid_tile_uv_disto| #
orcesimplexkreguency_expression

: i 9 2 R ; lifetimelnitial 2.5 * over(CurvePowerinConvex(ra| #

forceSimplexStrength_expression g — ’
ifetimeUpdate |1.0000
ositionlnitial_expression :
P l = lp waterRippleEnabled|nitial rand1f() < 0.1 rd
velocityConeAngle_expression .

Sl _ VfxParameterExpression] 0.1000 y
velocityConeDirection_expression i R e)
velocityConeSpeed_expression :

spawnRate_expression p ates

) Graphics Programming Conference, November 18-20, Breda

Video

. Graphics Programming Conference, November 18-20, Breda

Resource Format

e VfxResource

» VfxParticleResource (1..*)
* Compute shader

» Storage buffer
* Patch points (meshes, images, sounds)
* Particle state size

 Particle hierarchy
e Effect parameters data & layout

) Graphics Programming Conference, November 18-20, Breda

Runtime Data

* [nstance
* Parameters

* Particle chunk
* Compute pipeline
 State buffer
 Active indices list (2x for ping-pong)
* Free indices list
e Capacity: max particle count

 Pass allocation offsets via push constants

) Graphics Programming Conference, November 18-20, Breda

Execution

* Most simple approach

* One dispatch per particle per instance
* Group count from max particle count
* Single descriptor set for everything

* Push constants per dispatch
» Effect parameters, parameter values, particle state array, ...

* Breadth-first over all instances, sorted by pipeline
 Just one barrier in between hierarchy levels

) Graphics Programming Conference, November 18-20, Breda

wkCmdPushConstants(VK_SHADER _STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(vk_SHADER _STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(Vk_SHADER _STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(vk_SHADER_STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
kamdBinl:IF'ipEIinE[Iight_DElDﬂdSB-Dca?-dBDa-afac—eadahﬁbﬂfBZ@@]I
wkCmdPushConstants(VE_SHADER _STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(vk_SHADER _STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(vk_SHADER_STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(vk_SHADER_STAGE_COMPUTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
vkCmdPushConstants(Vk_SHADER_STAGE_COMPLTE_BIT, (4 bytes))
wkCmdDispatch(1, 1, 1)
wkCmdPushConstants(VE_SHADER_STAGE_COMPLUTE_BIT, (4 bytes))
vkCmdDispatch(1, 1, 1)
wkCmdPushConstants(VE_SHADER_STAGE_COMPUTE_BIT, (4 bytes))
vkCmdDispatch(1, 1, 1)
vkCmdBindPipeline(particle_343af444-b614-44e8-89b1-2f15013bfd94 &)
vkCmdPushConstants(vk_SHADER_STAGE_COMPUTE_BIT, (4 bytes))
‘ wkCmdPipelineBarrier(1)
vkCmdDispatch(2, 1, 1)
wkCmdBindPipeline particIE_EDc'ia?fb-cadﬂ-dﬂS-Bahﬂ-dcld-BEﬂcchE@@jl
wkCmdPushConstants(Vk_SHADER_STAGE_COMPLUTE_BIT, (4 bytes))
vkCmdDispatch(1, 1, 1)

) Graphics Programming Conference, November 18-20, Breda

50,300,000 ps 50,400,000 ps 50,500,000 ps 50,600,000 ps 50,700,000 ps 50,800,000 ps 50,200,000 ps 51,000.00
II|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIII\

RX 480:

cs
Jverlay Duration ﬁlterl-
vfx_si'rl.llation
] pr
pz
+|+ 138 148 || | | 1567 | 1847 |2101 2120 2251 2269
3% Y - | 1066 | |1827 | 2023 215¢ 2254
50| | | 1 1 [t667] 1866 2103 2134 2253 DSl
| | | 1828 | 2064 2119 2250 H
703 | | 1976 2135 2301
= 460 | FIA 1830 | 2085 2127 2252 2300
| | +— |2034 2136 2302
707 | | | 2061 2137
| | | |2001 2138
| | | | 2036 2139
| [[1998 2140
| | 2069 2141 |22?0
| |2002 2142
| | |1996 2143 2266
| | 2070 2144 2267
. W | | 2037 2160 2271
| | | 1676| 1865 2104 2272
| | 2021 2150
| | 2072 2145
| |1997 2146
| | 2071 2147
| | 1845|2100 2148
| 1846 2105
1848 2107 2149
1844 2009 2151

) Graphics Programming Conference, November 18-20, Breda

Obvious Optimizations

 Many threads don’t operate on active particles and exit early
 Compute group count from active particle count (instead of maximum)

* Execute multiple particle chunks in one dispatch
* From one effect
* From multiple instances

) Graphics Programming Conference, November 18-20, Breda

Shader code

void cs_main(uint3 dispatchId : SV_DispatchThreadID)

{
/] ...
if(dispatchld.x »>= particleCount) return;
s_particleIndex = g dataBuffer.Load(s _oldActiveIndicesOffset + dispatchId.x * 4);
/] ...
const VfxEffectData effect =|fillVfxEffectData(] s_effectParameters);
VfxParticleState particle =junpackParticleState(] s_particleState);
const VfxParticleParameters parameters =Ieva1uateParameters(particle, effect, engine);
const bool isAlive =|updateParticle(]| particle, parameters, effect, engine, isNew);
if(isAlive) { /* pack & store state, append to new active list */ }
else { /* append to free list */ }

}

) Graphics Programming Conference, November 18-20, Breda

Generated Code

VfxParticleParameters evaluateParameters(

VfxParticleTypeParameterBuffer parameterBuffer, VfxParticleState sta@

VfxEffectData effect, VfxEngineData engine)

VfxParticleParameters parameters;

parameters.
parameters.
parameters.
parameters.
parameters.
parameters.
parameters
parameters.

//

.depthFadeDistance

ignore_isInWater = effect.debug ignore isInWater;
isAdditive.nglgetX(parameterBuffer.isAdditive);
lightMode = parametePBuffer.lightMode;I

timerInitial = parameterBuffer.timerInitial;

timerUpdate = parameterBuffer.timerUpdate;

edgeFadeOutFactor = parameterBuffer.edgeFadeOutFactor;

parameterBuffer.depthFadeDistance;
alphalnitial = 0.3 * random_range(0.5, 1);

return parameters;

) Graphics Programming Conference, November 18-20, Breda

EEnahled: O
;Darticle-_ & p_water_bubbles v o0
EMax Particle Count: 512
éignore_ismw&ter effect.debug_ignore_isinWater rd
isAdditive p
lightMode 1 V4
timerlnitial 0.0000 4
timerUpdate 1.0000 rd
edgeFadeOutFactor 0.1000 s
;depthFadeDistance 0.0500 '4
éalphalnitial 0.3 * random_range(0.5, 1) E -
éalphaUpdate 1.0000 4
brightnessinitial 1.0000 V4
brightnessUpdate 1.0000 4
‘colornitial (1.00, 1.00, 1.00, 1.00) v
écolorUpdate (1.00, 1.00, 1.00, 1.00) v &
éimage & vfx_water_bubble_animated | #
;distortionlmage & vfx_noise_liquid_tile_uv_disto| #
é[l'fetimelnitl'al 2.5 * aver(CurvePowerinConvex(ra| #
lifetimeUpdate 1.0000 g
;waterRippleEnabledIm'tial rand1f() < 0.1 r4
waterRippleStrength 0.1000 4
émesh & vfx_generic_quad_backface | ¢
P States

Particle API

e Draw / Next Slide
e Meshes

* Models Previous transform via
* Point lights hashmap (for now) for
e Decals motion vectors

* Water

* Foliage displacement

* Fog
e Sound / Read back on CPU

—>No retained state
=>Supports multiple draws per update

* Debug Draw

* Sample
* Images
* Fog
* Fog surface
* Water
* Water features
* Local heightmap
* World SDF
* Meshes

 Random [PCG 2014]
e Spawn Particle
* ...and many more

) Graphics Programming Conference, November 18-20, Breda

Random points from
pre-process, see later

Draw Mesh AP]

struct TransparentDrawParameters

{

}s

float3

Quaternion

float3
GpuCombinedImage2D
GpuCombinedImage2D
float3

float

float

float

float

float2

float2
UvDistortion
float

float

AlphaClip

int

bool

bool

bool

bool
VfxSortParameters
uint

float

Flipbook

position;
orientation;
scale;

image;

normals;

color;

alpha;

metallic;
roughness;
reflectance;
uvOffset;

uvScale;
uvDistortion;
depthFadeDistance;
edgeFadeOutFactor;
alphaClip;
vertexAlphaMode;
isAdditive;
discardInsideWater;
discardOutsideWater;
depthFadeOnWater;
sort;

lightMode;

exposureCorrectionFactor;

flipbook;

enum VfxSortType

{
None,
YoungestFirst,
OldestFirst,
DistanceToNearPlane,
DistanceToCamera,
Custom,
}s
struct VfxSortParameters
{
VfxSortType type;
float offset;
}s

void drawTransparentMesh(
VfxMesh mesh,
TransparentDrawParameters

) Graphics Programming Conference, November 18-20, Breda

parameters

Draw Mesh Implementation

 Sort all draws by sort key using radix sort

 Write new index buffers
 For above & below water

31-16 15-0

Instance index Vertex index

 Single draw call for each pass

) Graphics Programming Conference, November 18-20, Breda

Surface Points

* Water: CPU

* Waterfalls, splashes
* Fog: GPU

 Sample SDF

* One thread per Voxel

* If surface: Spawn point with hash
offset

* Hash map to track new points
* VFX: Point list

e Spawn particles at points

) Graphics Programming Conference, November 18-20, Breda

Video

) Graphics Programming Conference, November 18-20, Breda

Spawn Particle API
e Spawn parameters defined via data
Spawn_Spawner spawn;

spawn.position = position + (rand3f()*2-1) * radius;
spawnParticle(state, spawn);

) Graphics Programming Conference, November 18-20, Breda

bool updateParticle(inout VfxParticleState state,
VfxParticleParameters parameters, VfxEffectData effect,
VfxEngineData engine, bool isNew)

{
if(leffect.isActive)
{
return false;
}
const uint targetSpawnCount = effect.age / parameters.spawnRate;
const uint spawnCount = min(targetSpawnCount - state.spawnCount, 4);
for(uint spawnIndex = @Qu; spawnIndex < spawnCount; ++spawnIndex)
{
Spawn_Spawner spawn;
spawn.position = effect.position + (rand3f()*2-1) * parameters.randomSpawnRadius;
spawnParticle(state, spawn);
}
state.spawnCount = targetSpawnCount;
return true;
}

) Graphics Programming Conference, November 18-20, Breda

bool updateParticle(inout VfxParticleState state,
VfxParticleParameters parameters, VfxEffectData effect,
VfxEngineData engine, bool isNew)

{
if(isNew)
{
const VfxSound sound = parameters.sound;
playSound(state.position, sound);
}
drawDebuglLine(effect.position, state.position, 1.0);
drawDebugCross(state.position, 1.0, 1.0);
state.age += engine.fixedTimeStep;
if(state.age > 1.0)
{
return false;
}
return true;
}

) Graphics Programming Conference, November 18-20, Breda

Video

. Graphics Programming Conference, November 18-20, Breda

) Graphics Programming Conference, November 18-20, Breda

Video

) Graphics Programming Conference, November 18-20, Breda

Video

. Graphics Programming Conference, November 18-20, Breda

Video

~, Graphics Programming Conference, November 18-20, Breda

Conclusion

* Great results

e Technical artistry as written in the books

* No coding support from graphics programmers needed
* Many feature requirements, but seldom blocks

* Many small dispatches are fast

* But...

) Graphics Programming Conference, November 18-20, Breda

Issues

* Occasional NaNs e Shader compilers struggle
* Checks in the API * Bad dependencies in the asset
* GPU crashes and hangs build
* Unbounded loops
* Find and fix
+ Clamp delta-time * But there’s more...

* Maybe add better APIl/helpers
* Invalid descriptors

* Type safety

* Defensive API

* Uninitialized variables remain a
problem

) Graphics Programming Conference, November 18-20, Breda

Some numbers

e 376 Particles
e 1689 Vfx definitions
e 16519 Vfx nodes

. . . . Ve
* 30+ Minutes runtime compilation &

) Graphics Programming Conference, November 18-20, Breda

Can you spot the issue?

) Graphics Programming Conference, November 18-20, Breda

A little anecdote (RTX 2070)

VK_EXT_memory budget

vkAllocateMemory

3,4 GB

5,5GB

+2,9 GB

-VFX

6,9 GB

14

1,5 GB for VEX pipelines!!!

) Graphics Programming Conference, November 18-20, Breda

Memory Issues

* Too many pipelines Pipeline count (approx.)

Other: 711

* Large pipelines

VFX: 6787

~, Graphics Programming Conference, November 18-20, Breda

Large shader binaries (RTX 2070)

 VK_KHR_pipeline_executable_properties
* “Binary Size”

e>=761MB

 Largest pipeline: 489 KB

) Graphics Programming Conference, November 18-20, Breda

Inlining

{ GpuModel model, ModelDrawParameters parameters)

(!ismenderingEnabled() g_update.enableOpaqueMeshes)}

}

const hashId { s_chunkupdate2.chunkId) { s_instanceIndex b] (s_particleIndex]

s_modelCounter
const shaderWorldPesition worldPosition ion(parameters.positicn);

instanceIndex;
{ g_modelInstanceCounter[8u], , instanceIndex);
{ instanceIndex < g_update.maxModelInstanceCount)

modelIndex = model.modelIndex;

const ShaderWorldPosition cameraPosition
st cameraRelativePosition

sition(g_update.cameraPosition };
wur‘ldposltwn cameraPosition);

PackedshaderworldTransform ‘tr‘ansﬁ:r‘m
transform.positicn Shader
transform. scale
transform.orientation

orldPositie nt3(worldPosition };

par‘ameters scaLe

parameters.orientation.value;

PackedshaderWorldTransform previcusTransform = transform;
previcusTransformInstanceIndex hLookup(g_gpuHashMapSource, hashId };

(previousTransformInstanceIndex KEEN_GPU_HASH_EMPTY)

previousTransform = g_previousMedelTransformSource[previousTransformInstanceIndex];

RenderInstancepata instance (RenderInstanceData)o;

instance.packedTransform transform;

instance.dissclveParameters (parameters.dissclve.offset, (» parameters.dissolve.radius) };
instance.dissolveEdgeBrightness = parameters.dissolve.edgeBrightness;

instance.alphaclip (C)(parameters.alphaclip) 'H

instance .modelIndex

medelIndex;
instance.groupMask H
instance.tintColor

(linearTosRGE{ (parameters.color }), IV H
instance.flagsandemissiveractor H

((parameters.emissiveractor), })

g_modelInstances[instanceIndex] instance;

g_prevModelinstances[instanceIndex].packedTransform = previcusTransform;
insertresult ert(g_gpuHashmapTarget, hashId, instanceIndex };

(insertResult != KEEN_GPU_HASH_EMPTY)

g_previcusmodelTransformTarget[instancelIndex] = transform;

(g_meodelInstanceCounter[u], s

s_modelCounter;

if(floor(state.modelIndex) == ©
drawModel(parameters.model ©
else if(floor(state.modelIndex)
drawModel(parameters.model 1
else if(floor(state.modelIndex)
drawModel(parameters.model 2
else if(floor(state.modelIndex)
drawModel(parameters.model
else if(floor(state.modelIndex)
drawModel(parameters.model 4
else if(floor(state.modelIndex)
drawModel(parameters.model
else if(floor(state.modelIndex)
drawModel(parameters.model 6
else if(floor(state.modelIndex)
drawModel(parameters.model 7

) Graphics Programming Conference, November 18-20, Breda

)

U'I

drawParams
1)
drawParams
2)
drawParams
3)
drawParams
4)
drawParams
5)
drawParams
6)
drawParams
7)
drawParams

Inlining

GpuModel model;

Saved 60s offline compile time
if(floor(state.modelIndex) == 0) on one Console platform \:_:

model = parameters.model 0O;

else if(floor(state.modelIndex) == 1)
model = parameters.model 1;
else if(floor(state.modelIndex) == 2)
model = parameters.model_2; .
else if(floor(state.modelIndex) == 3) ° Other patterns
model = parameters.model_3; .
else if(floor(state.modelIndex) == 4) * Procedural noise
model = parameters.model 4;
else if(floor(state.modelIndex) == 5) ° Grad|ent Calculat|ons thereof .0

model = parameters.model_5;
else if(floor(state.modelIndex) . .
model = parameters.model_6; ¢ Replaced W|th noise tEXtu re
else if(floor(state.modelIndex)
model = parameters.model 7;

1]
]
(e)]
~

1]
]
~N
~

drawModel(model, drawParams);

) Graphics Programming Conference, November 18-20, Breda

Inlining

* Tried [noinline]
* Maps to OpFunction/OpFunctionCall
* Unstable

) Graphics Programming Conference, November 18-20, Breda

Large amount of pipelines

VfxParticleParameters evaluateParameters(
VfxParticleTypeParameterBuffer parameterBuffer,
VfxParticleState state, VfxEffectData effect, VfxEngineData engine)

VfxParticleParameters parameters;

parameters.ignhore_isInWater = effect.debug ignore_isInWater;
parameters.isAdditive.x = getX(parameterBuffer.isAdditive);
parameters.lightMode = parameterBuffer.lightMode;
parameters.timerInitial = parameterBuffer.timerlInitial;
parameters.timerUpdate = parameterBuffer.timerUpdate;
parameters.edgeFadeOutFactor = parameterBuffer.edgeFadeOutFactor;
parameters.depthFadeDistance = parameterBuffer.depthFadeDistance;
parameters.alphalnitial = 0.3 * random_range(0.5, 1);

/] ...

return parameters;

) Graphics Programming Conference, November 18-20, Breda

Failed: Expressions as simple data

* Collect all expressions per particle
* Replace with expression index
* Shaders became too large and unstable

) Graphics Programming Conference, November 18-20, Breda

WIP: Data driven evaluation of expressions

e Get rid of VfxNode -> Code
dependency

* Parse HLSL expression
e Simplify as data
* VM is too general

* Parameterize common
expressions

 Data driven variable reads

* Use GS memory to get rid of
inlining

* random_range(0.3, 1)
* random_range(0.7, 1)
* random_range(0.7, 1)
random range(0.1, 1)
random range(0.2, 1)
random range(0.3, 1)
random range(0.5, 1)
random_range(0.7, 1)
random range(0.8, 1)
* random_range(0.2, 1)

R RRRRRROOO®
N % % % % % % U1 NN

=> $0 * random_range($1, $2)

) Graphics Programming Conference, November 18-20, Breda

Conclusion Pt. 2

* Artists are not graphics programmers
* Unusual shader code
* Probably should go through reviews...

 GPUs are not really CPUs

* Be aware of code that looks nice but will execute horribly

* Shader permutations can still be problematic

* Be aware of your dependencies
* An uber shader is not always the solution

) Graphics Programming Conference, November 18-20, Breda

Thank you!

) Graphics Programming Conference, November 18-20, Breda

References

e [PCG 2014] Melissa E. O'Neill, PCG: A Family of Simple Fast Space-
Efficient Statistically Good Algorithms for Random Number
Generation

) Graphics Programming Conference, November 18-20, Breda

	Folie 1: Lukas Feller
	Folie 2
	Folie 3: Enshrouded VFX System
	Folie 4: Enshrouded VFX System
	Folie 5: Enshrouded VFX System
	Folie 6: Overview
	Folie 7: Particle
	Folie 8: Particle Data
	Folie 9: Particle Code
	Folie 10: Overview
	Folie 11: Effect Data
	Folie 12: Effect Data
	Folie 13: Effect Data
	Folie 14: Effect Data
	Folie 15: Video
	Folie 16: Resource Format
	Folie 17: Runtime Data
	Folie 18: Execution
	Folie 19
	Folie 20
	Folie 21: Obvious Optimizations
	Folie 22: Shader code
	Folie 23: Generated Code
	Folie 24: Particle API
	Folie 25: Draw Mesh API
	Folie 26: Draw Mesh Implementation
	Folie 27: Surface Points
	Folie 28: Video
	Folie 29: Spawn Particle API
	Folie 30
	Folie 31
	Folie 32: Video
	Folie 33: Video
	Folie 34: Video
	Folie 35: Video
	Folie 36: Video
	Folie 37: Conclusion
	Folie 38: Issues
	Folie 39: Some numbers
	Folie 40: Can you spot the issue?
	Folie 42: A little anecdote (RTX 2070)
	Folie 43: Memory Issues
	Folie 44: Large shader binaries (RTX 2070)
	Folie 45: Inlining
	Folie 46: Inlining
	Folie 47: Inlining
	Folie 48: Large amount of pipelines
	Folie 49: Failed: Expressions as simple data
	Folie 50: WIP: Data driven evaluation of expressions
	Folie 51: Conclusion Pt. 2
	Folie 52: Thank you!
	Folie 53: References

