



# Neural Shading for Real-Time Graphics

Andrew Allan, Devtech Engineer | Graphics Programming Conference



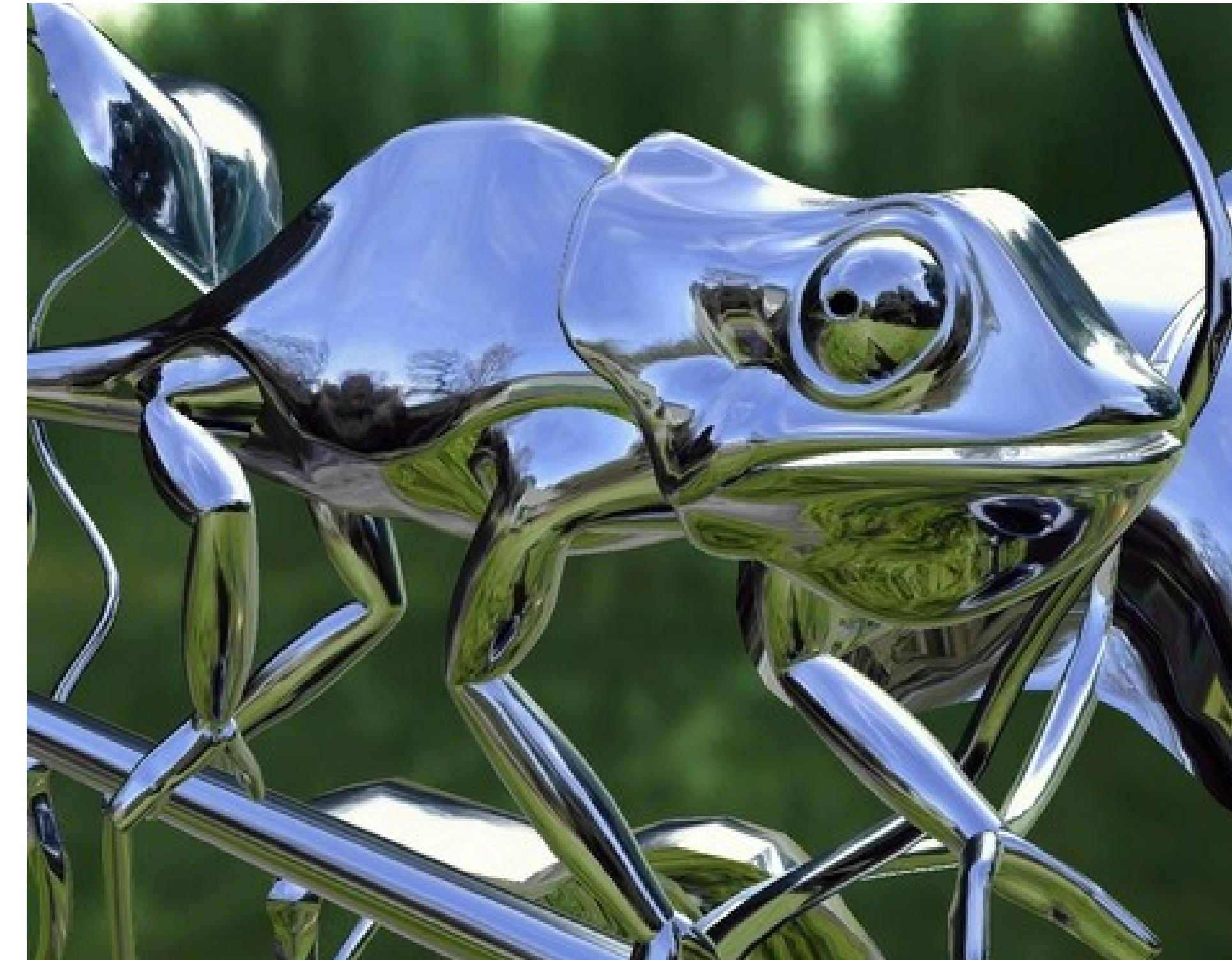
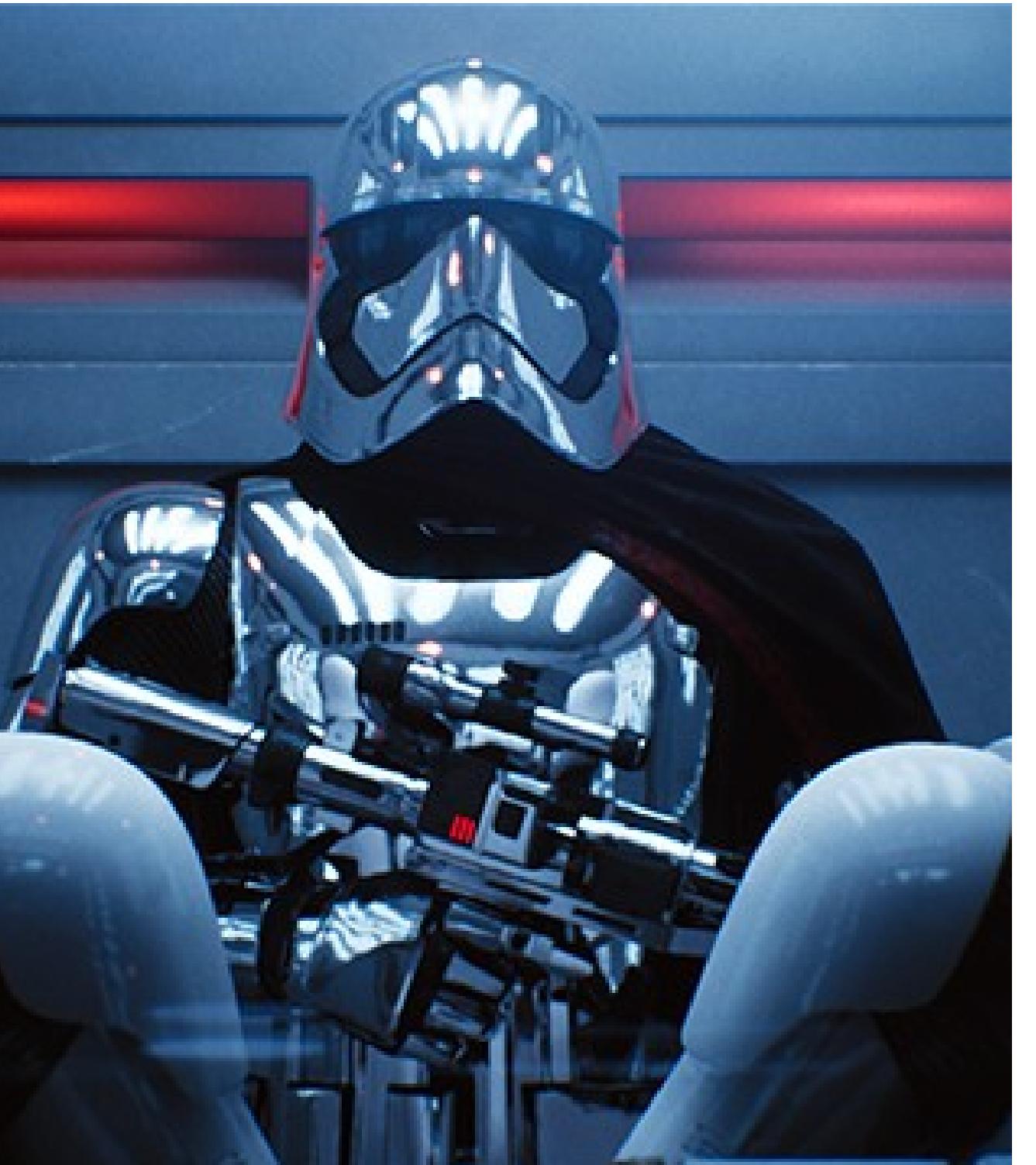
Graphics Programming Conference, November 18-20, Breda

2025

# Introduction

# Why Neural Shading?

- Real-time rendering is about approximating reality with the highest fidelity possible within 16 or 33 milliseconds per frame.
- This pursuit has driven over 40 years of increasingly complex graphics pipelines and shader code.





**Graphics Programming Conference, November 18-20, Breda**

**2025**



Graphics Programming Conference, November 18-20, Breda

2025

# What is Neural Shading?

- Neural Shading integrates machine learning into the real-time rendering pipeline, replacing or augmenting traditional shading functions with learned neural networks.



# What is Neural Shading

- Utilises a neural network
- Anything that is trainable

Neural Shading

# What is Neural Shading

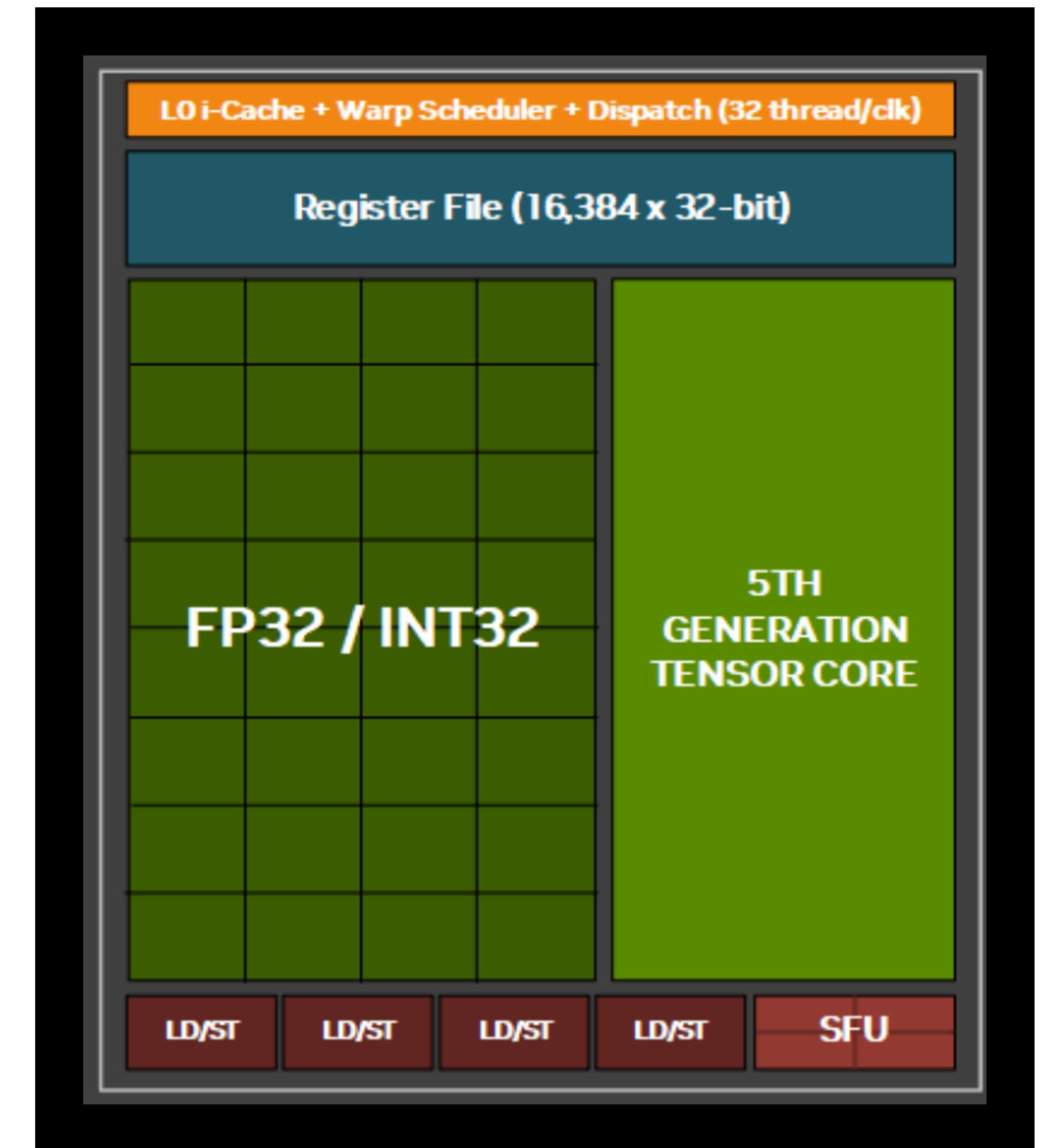
- Utilises a neural network
- Anything that is trainable

Neural Shading

- Runs in the graphics pipeline
- Part of the normal shading code

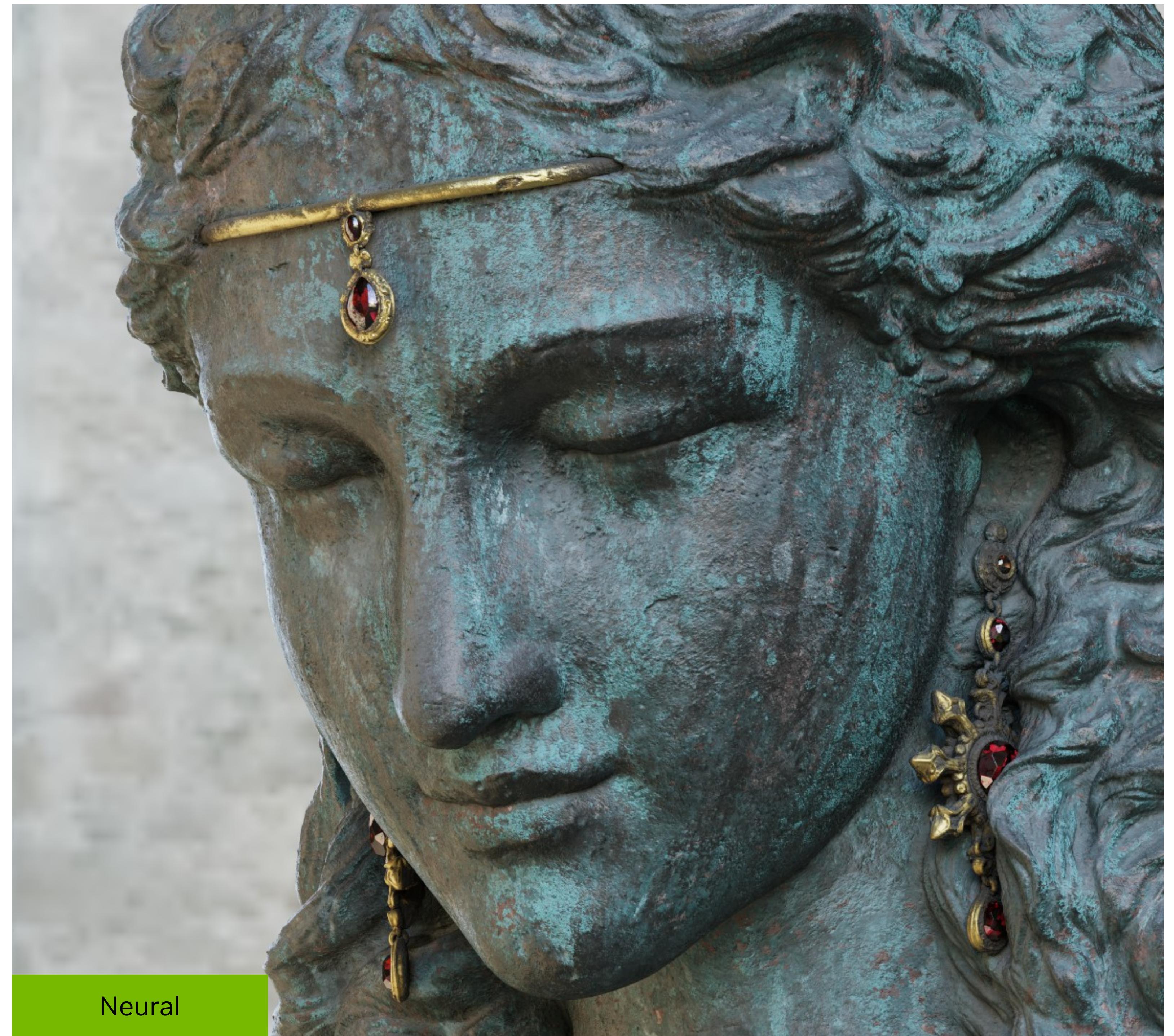
# Harnessing Neural Hardware

- Modern consumer GPUs include neural network accelerators that remain idle during traditional rendering.
- Neural Shading allows us to harness these accelerators through Cooperative Vectors, integrating neural computation directly into the graphics pipeline.



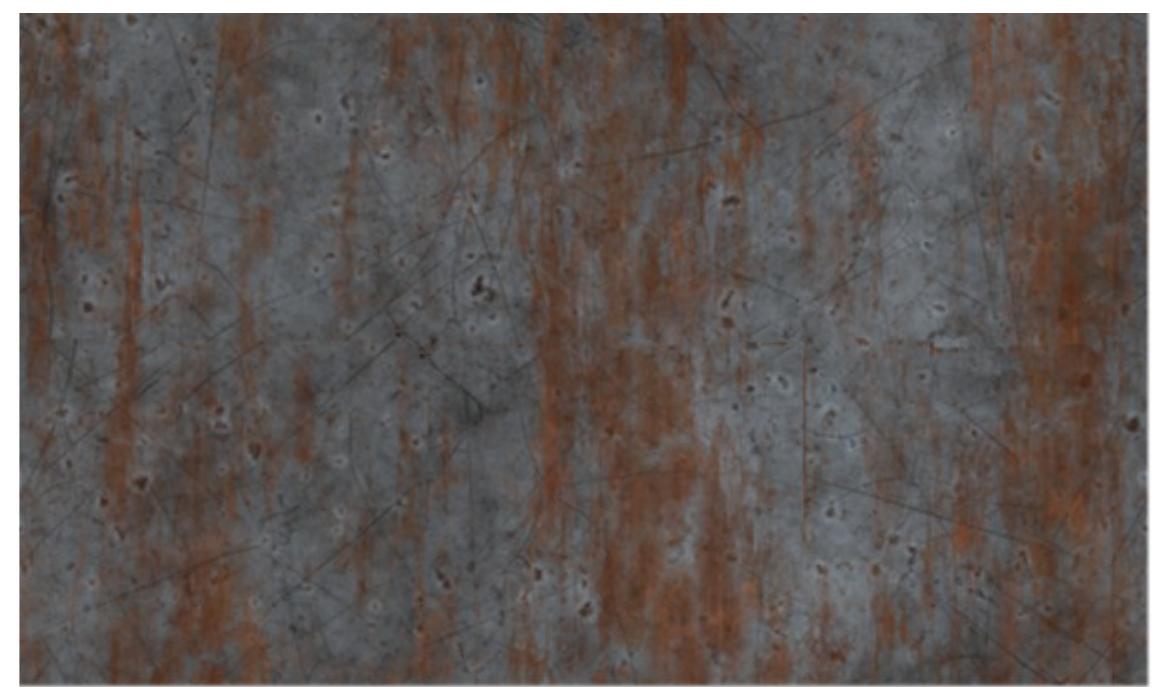
# Classical vs. Neural Shading

- Real-time rendering has always relied on approximate mathematical solutions to simulate physically accurate effects.
- Classical engineering methods depend on these analytical models, but many shading problems are too complex or costly to express accurately.
- Neural Shading learns these complex relationships directly from data, bypassing the need for explicit analytical solutions.



# Research

## Compression



[Fujieda and Harada, 2024] [Kuznetsov et al., 2021]



[Belcour and Benyoub, 2025] [Mullia et al., 2024]



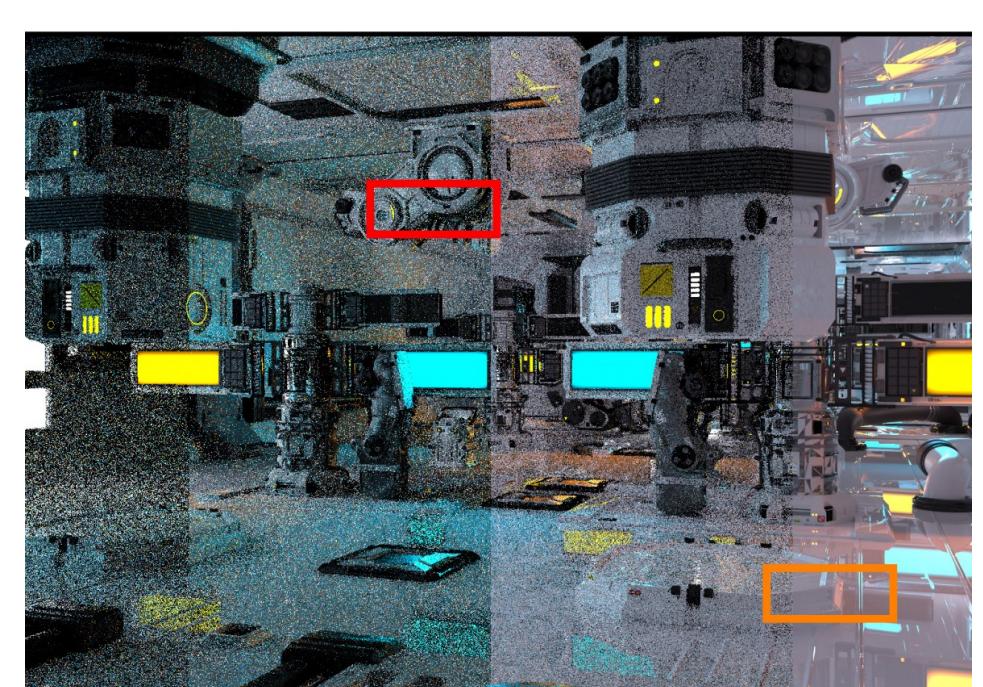
[Vaidyanathan et al., 2023] [Zeltner et al., 2024]

## Materials



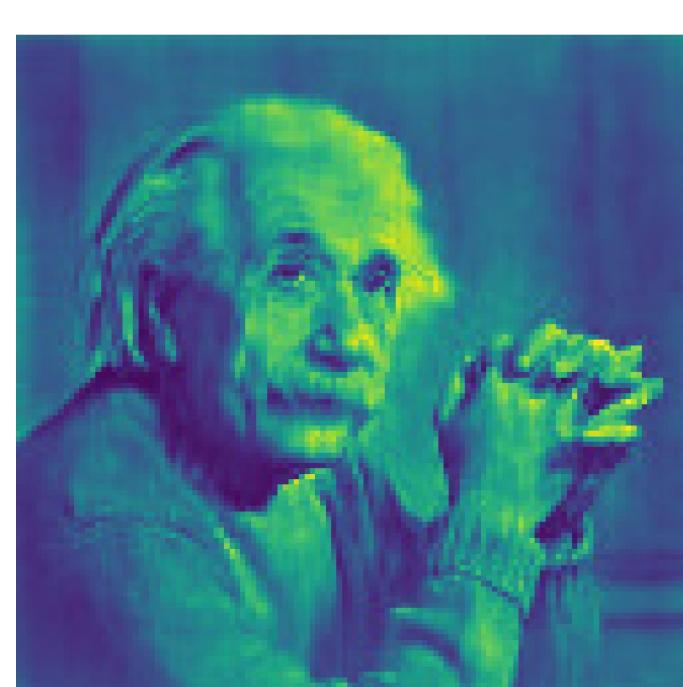
[Mildenhall et al., 2020]

## Caching



[Müller et al., 2021]

## Guiding



[Müller et al., 2019]

## Geometry



[Mildenhall et al., 2020]



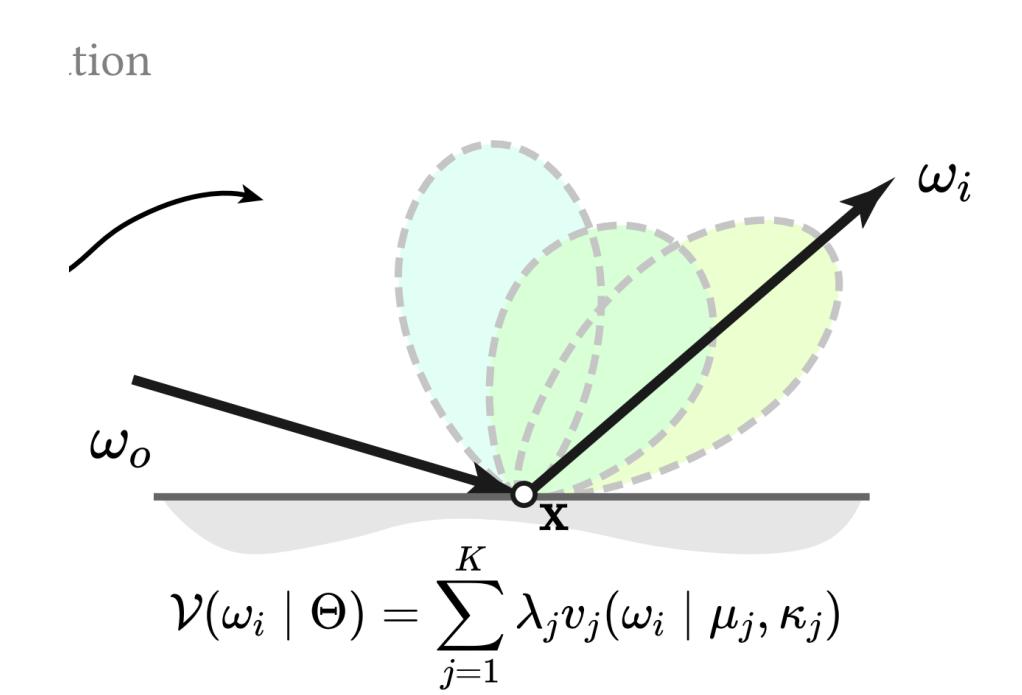
[Müller et al., 2022]



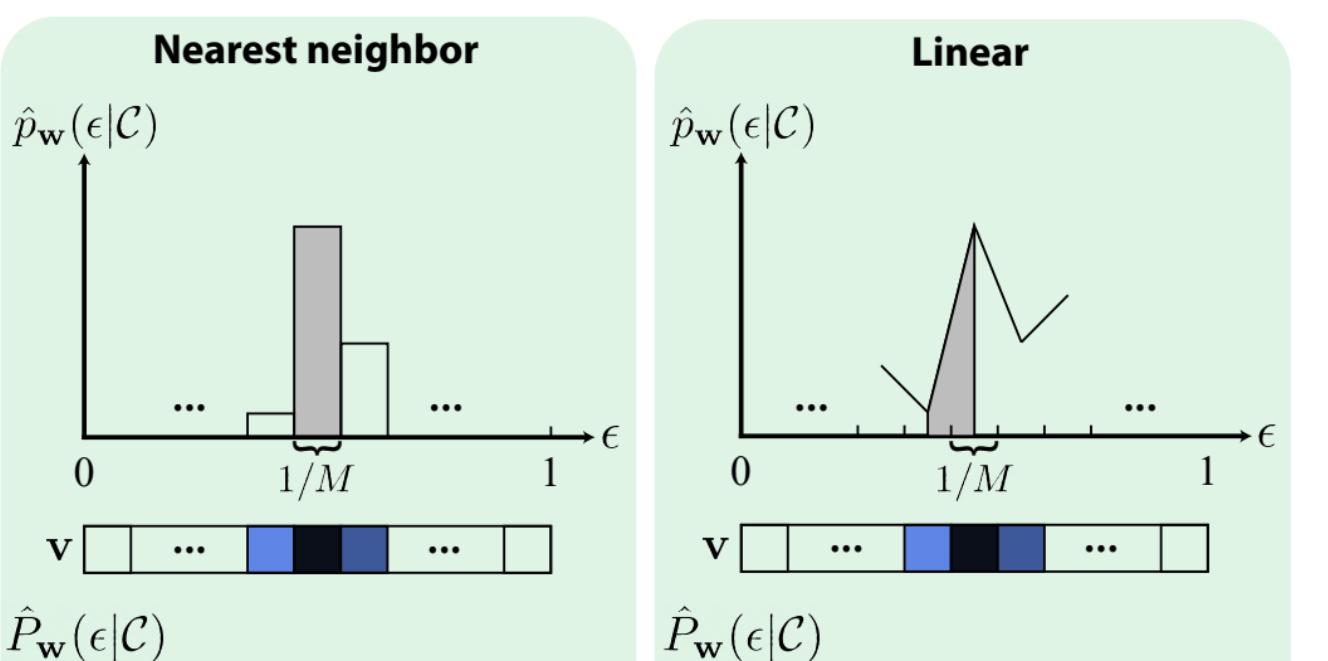
[Derevianykh et al., 2024]



[Kerbl et al., 2023]



[Dong et al., 2023]



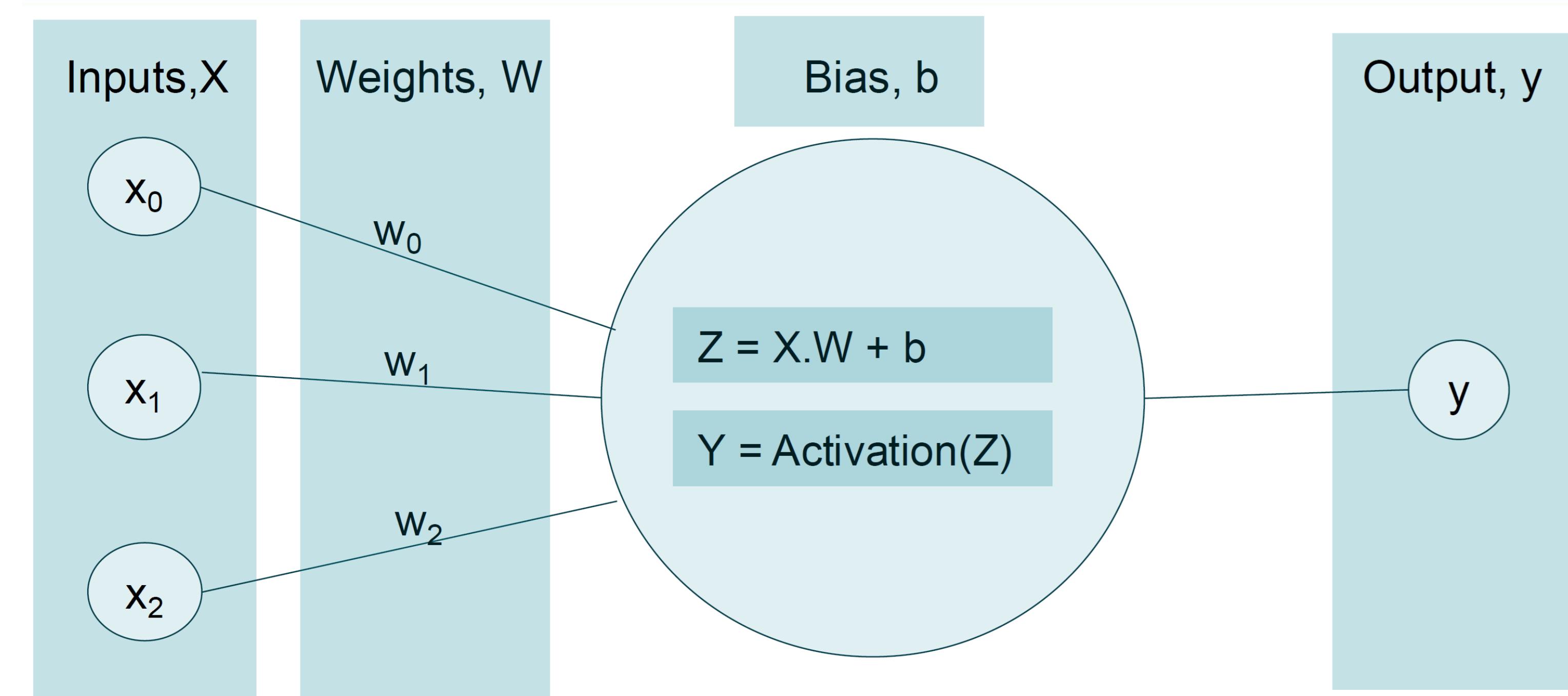
[Figueiredo et al., 2025]

# Core Concepts

# Learned Function

## Multilayer Perceptron

- We model the learned shading functions using small Multilayer Perceptron (MLP) networks.
  - An MLP is composed of many interconnected neurons, each performing a weighted sum of its inputs followed by a nonlinear activation.
  - A network is structured with an input layer, one or more hidden layers and an output layer.
- Each network is trained during prior to rendering to approximate reference shading data.
- During rendering, shaders execute MLP inference on the GPU to evaluate shading results in real time.



# Training

## Forward Phase

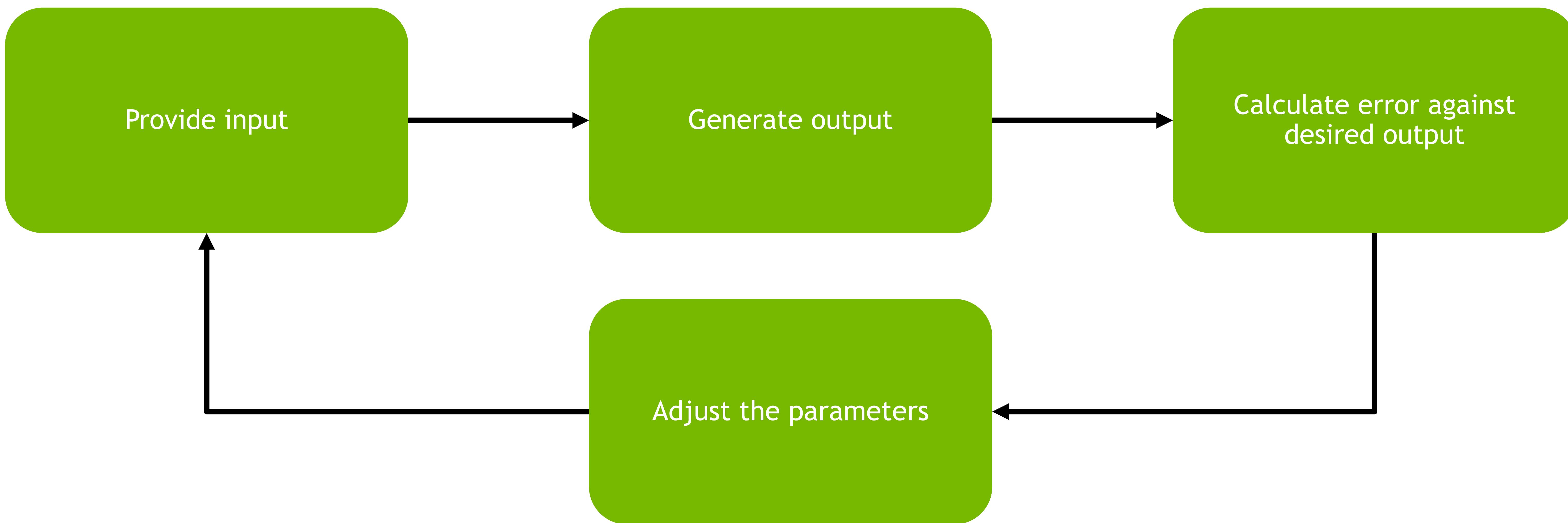
- During forward phase of training, the network takes inputs and produces a predicted output. This result is compared to the desired output to calculate an error, providing a measure of how closely the model reproduces the target shading or visual appearance.



# Training

## Backwards Phase

- The calculated error is backpropagated through the network to compute gradients, which update the network's parameters to better match the target shading.



# Optimizer

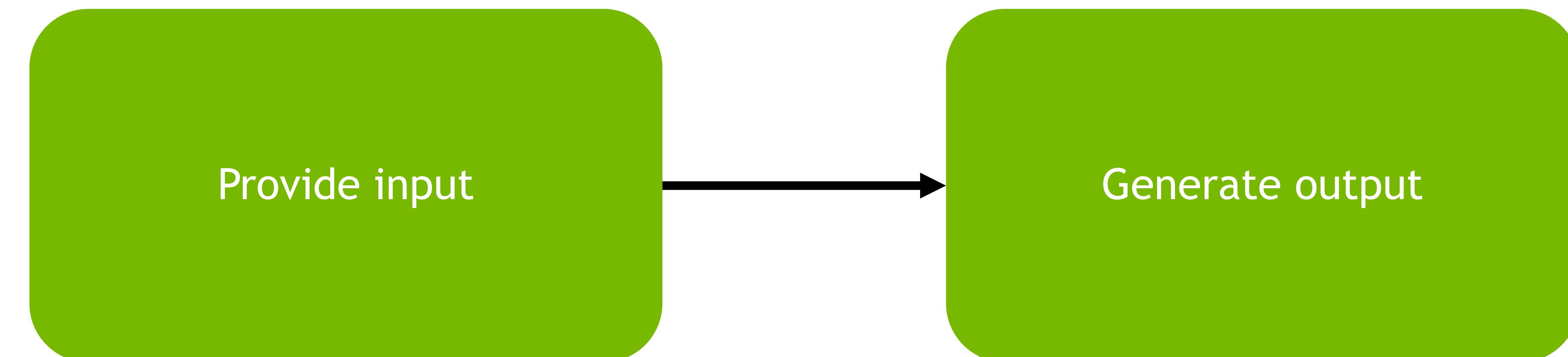
## Backwards Phase

- Once gradients are calculated, an optimizer uses them to adjust the network's weights and biases in order to minimize the loss.
- The simplest form is Stochastic Gradient Descent (SGD), which updates each weight by subtracting the gradient scaled by a learning rate.
- Adam improves on SGD by adapting the learning rate for each weight using momentum and gradient history, leading to faster and more stable convergence.

# Inference

## Forward Phase

- During inference, the trained network takes the inputs and produces a final shading output directly, using the parameters learned during training.



# First Neural Shader

# Tools

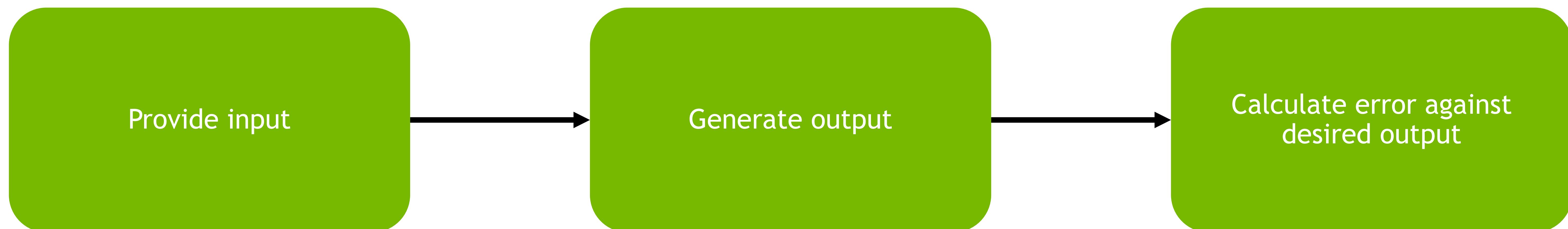


- Powerful / flexible shading language
- Write once / run anywhere
  - Compiles to SPIR-V and DXIL
- Generics
- Supports 'auto-diff' (does calculus for us)
  - Very useful for developing
- Python/C++ interface to Slang
- Full featured graphics api
- Cross platform
- Functional api to directly call Slang functions from Python

# MLPs in Shaders

## Forward Pass

- Let's use our simplified model to train a network that generates the pixels of a texture



```
float2 uvCoordinates;
```

```
float3 predictedColor;
```

```
float3 error = predictedColor  
- actualColor;
```

# MLPs in Shaders

## Shader Code

- In shader code, MLPs are implemented directly within the regular shading stage:

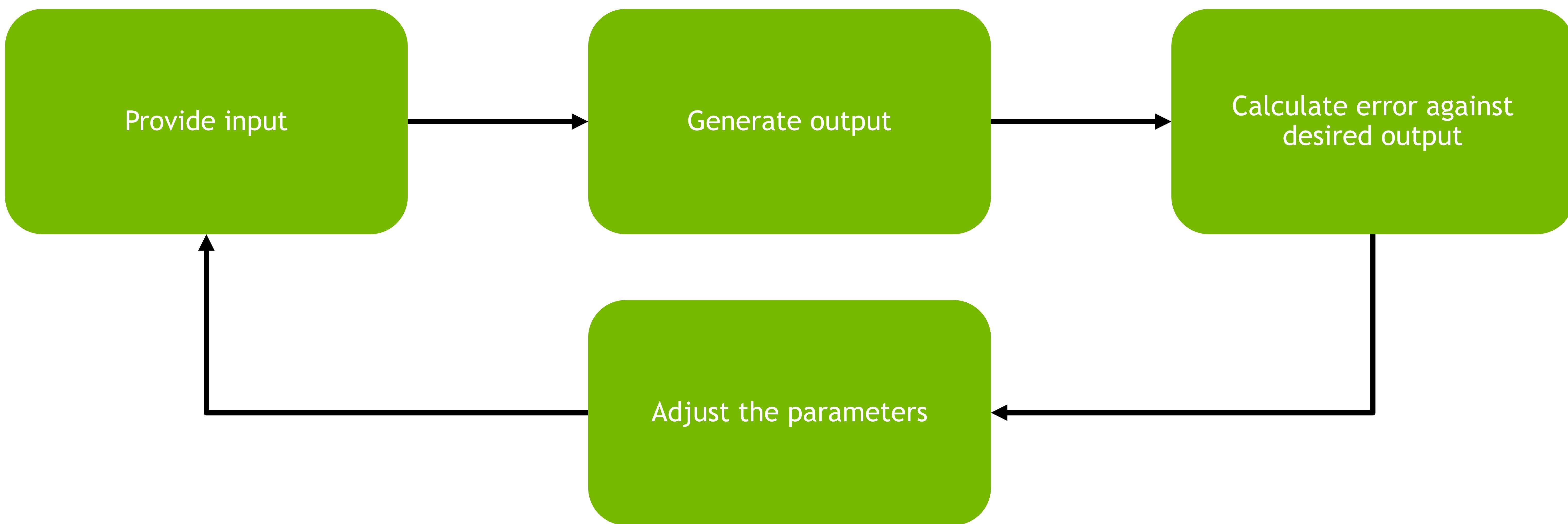
```
float3 loss(uint2 uvCoordinates, float3 actualColor)
{
    // Generate output
    float3 predictedColor = forwardPass(uvCoordinates);

    // Calculate error
    float3 error = predictedColor - actualColor;
    return error * error; // squared error
}
```

# MLPs in Shaders

## Backwards Pass

- Now we must close the training loop by backpropagating the error through the network to generate gradients and adjust the network parameters accordingly.



# Training MLPs in Shaders

## Differentiation

### Inference

- We have our loss function:

```
float3 loss(uint2 uvCoordinates, float3 actualColor)
{
    // Generate output

    float3 predictedColor = forwardPass(uvCoordinates);

    // Calculate error
    float3 error = predictedColor - actualColor;

    return error * error; // squared error
}
```

### Backwards

- How do we differentiate the loss function?
- In HLSL we will need to manually derive it.
- But with Slang, we can let the compiler derive it!

```
bwd_diff(loss)( /* ... */ );
```

- This saves a great deal of time and effort during the experimentation stage of training a neural network

# Training MLPs in Shaders

## Gradients

- We can now derive the gradients

```
void calculateGradients(uint2 uvCoordinates)
{
    // Generate output
    float3 predictedColor = forwardPass(uvCoordinates);

    // Get desired output
    float3 actualColor = inputTexture[uvCoordinates].rgb;

    // Calculate error
    bwd_diff(loss)(uvCoordinates, actualColor);
}
```

# Training MLPs in Shaders

## Optimizer

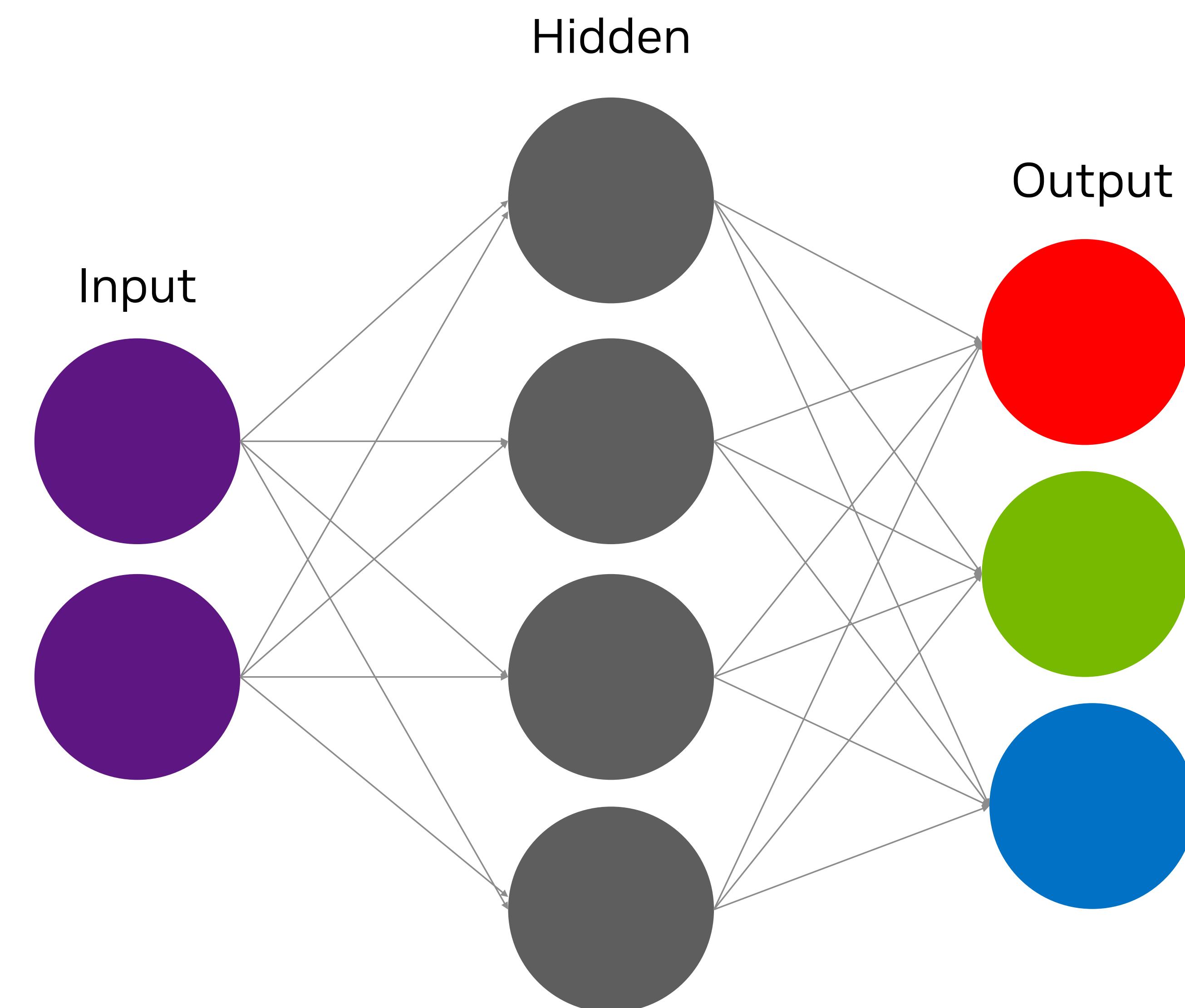
- With the gradients we now iterate through each of the weight and bias adjust them accordingly

```
float optimizerStep(float weightBias, float gradient, float learningRate)
{
    float updatedWeight = weightBias - learningRate * gradient;
    return updatedWeight;
}
```

# MLPs in Shaders

## First Attempt

- Let try this simple network

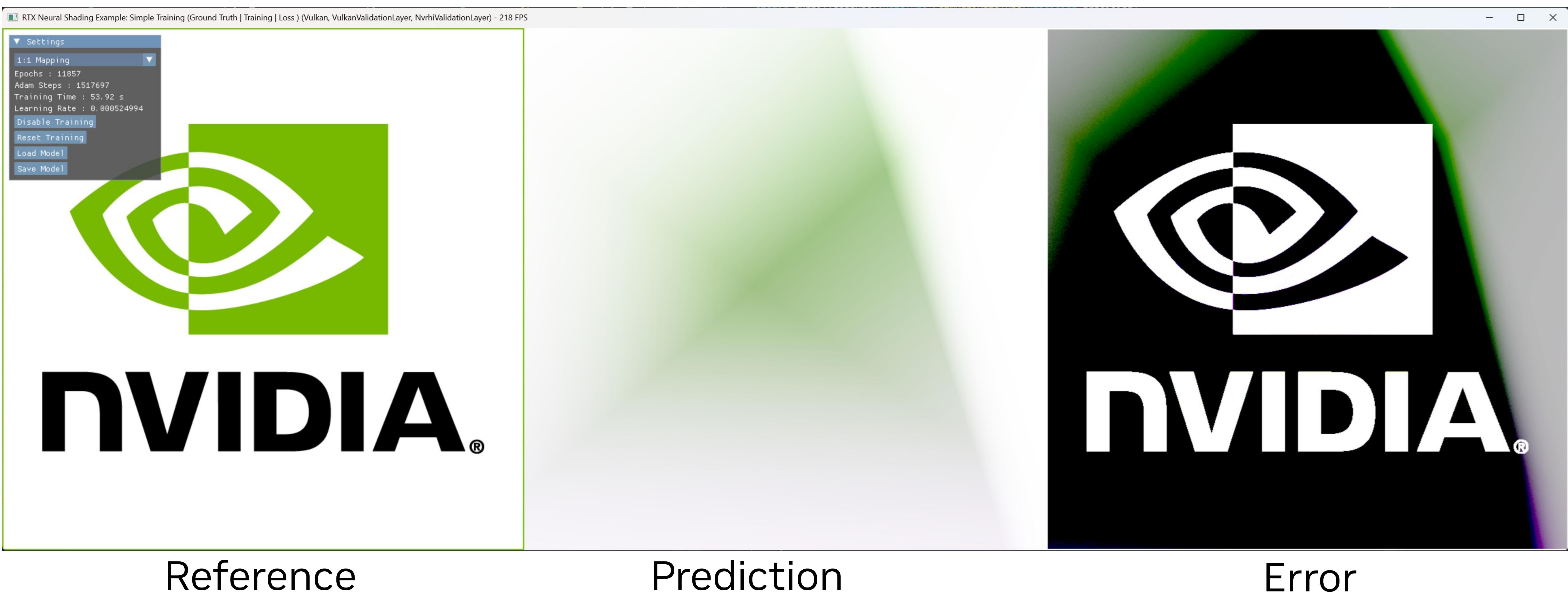


# Results

- With this first attempt, did it get close?

# Results

- With this first attempt, did it get close?
- Well, no. This leads to the key part of training a neural network



# Iteration

SlangPy to the Rescue!

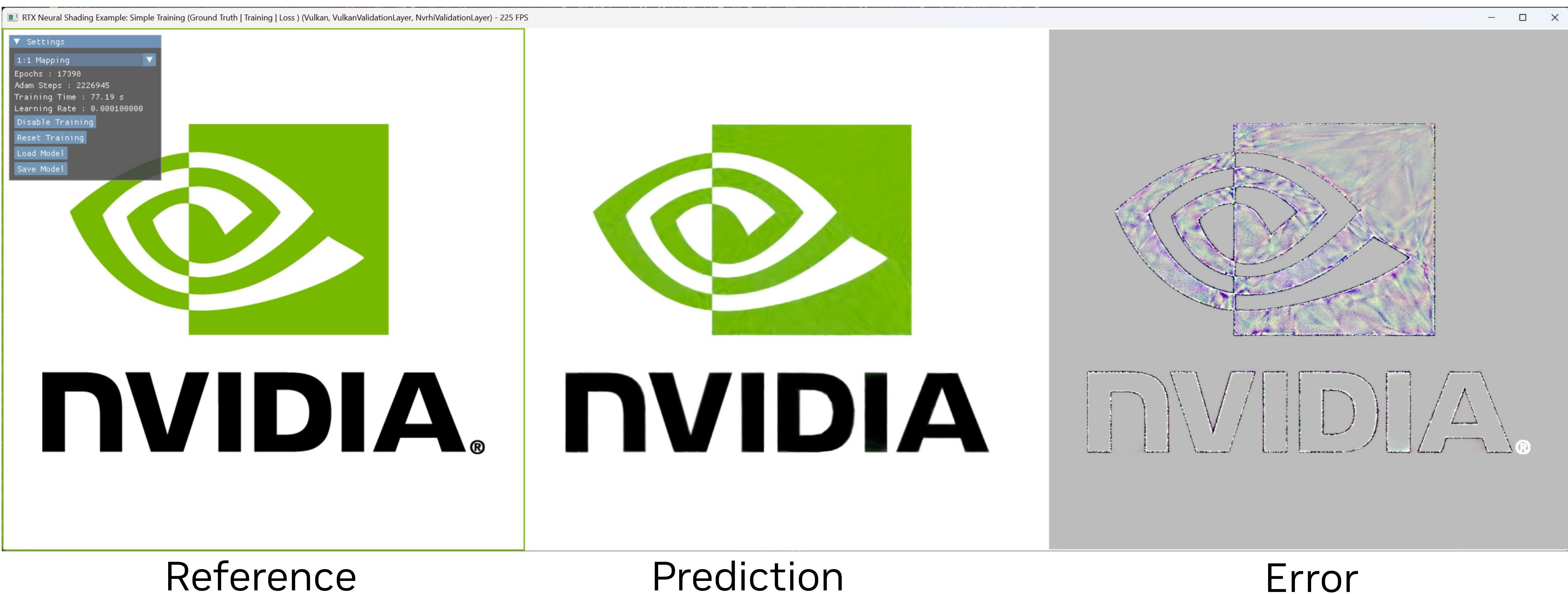
- When training a neural network for a new task, the initial results are rarely perfect. Iteration is essential and the ability to iterate quickly is even more important.
- Efficient GPU-based training pipelines are essential for rapid experimentation and refinement, which is why SlangPy was developed.
- SlangPy provides both Python and C++ interfaces to Slang, enabling fast prototyping of shading and neural rendering techniques.
- Once the model performs as expected, it can be deployed in C++, reusing the same Slang code for seamless integration into production code.

```
mlp = TrainableMLP(device, spy.DataType.float16,  
                    num_hidden_layers=4,  
                    input_width=2,  
                    hidden_width=64,  
                    output_width=3,  
                    hidden_act=LeakyReLUAct(),  
                    output_act=SigmoidAct())
```

# Iteration

SlangPy to the Rescue!

- So, with SlangPy we can quickly experiment with all configurations of the neural network
  - Including but not limited to; networks size and depth, activation functions, input encoding and different optimizers



# Cooperative Vector

# Cooperative Vector

## API

- Cooperative vector operations allow multiple threads within a warp to jointly execute small matrix and vector computations on Tensor Cores, providing efficient acceleration for MLP inference and training
  - They are a long vector type that extends traditional vector ranges up to 128 elements.
- Cooperative vector functionality is vendor neutral on DirectX 12 and available on Vulkan through an NVIDIA extension.
- DirectX 12
  - DirectX Agility SDK 1.717.0-preview\* with Shader Model 6.9 preview
- Vulkan
  - VK\_NV\_cooperative\_vector
  - Available from Vulkan SDK 1.4

\*Don't ship with the preview SDK

# Cooperative Vector

## Shader Code

- Cooperative vector provides the key functions we need to accelerate inference and training within shaders
- Inference
  - Matrix Multiply (Add): `coopVecMatMul(Add)`
    - Input Vector \* Matrix (+ Bias)
- Training
  - Outer product Accumulate: `coopVecOuterProductAccumulate`
    - Compute the outer product of two vectors and accumulate the results into memory.
  - Reduction Accumulate: `coopVecReduceSumAccumulate`
    - Accumulate element of the input vector into memory.

# Cooperative Vector

## Inference in the Graphics Pipeline

- In shader code, MLPs are implemented directly within the regular shading stage:

```
float3 forwardPass(uint2 uvCoordinates)
{
    // Provide input
    CoopVec<half, 2> inputParams = uvCoordinates;

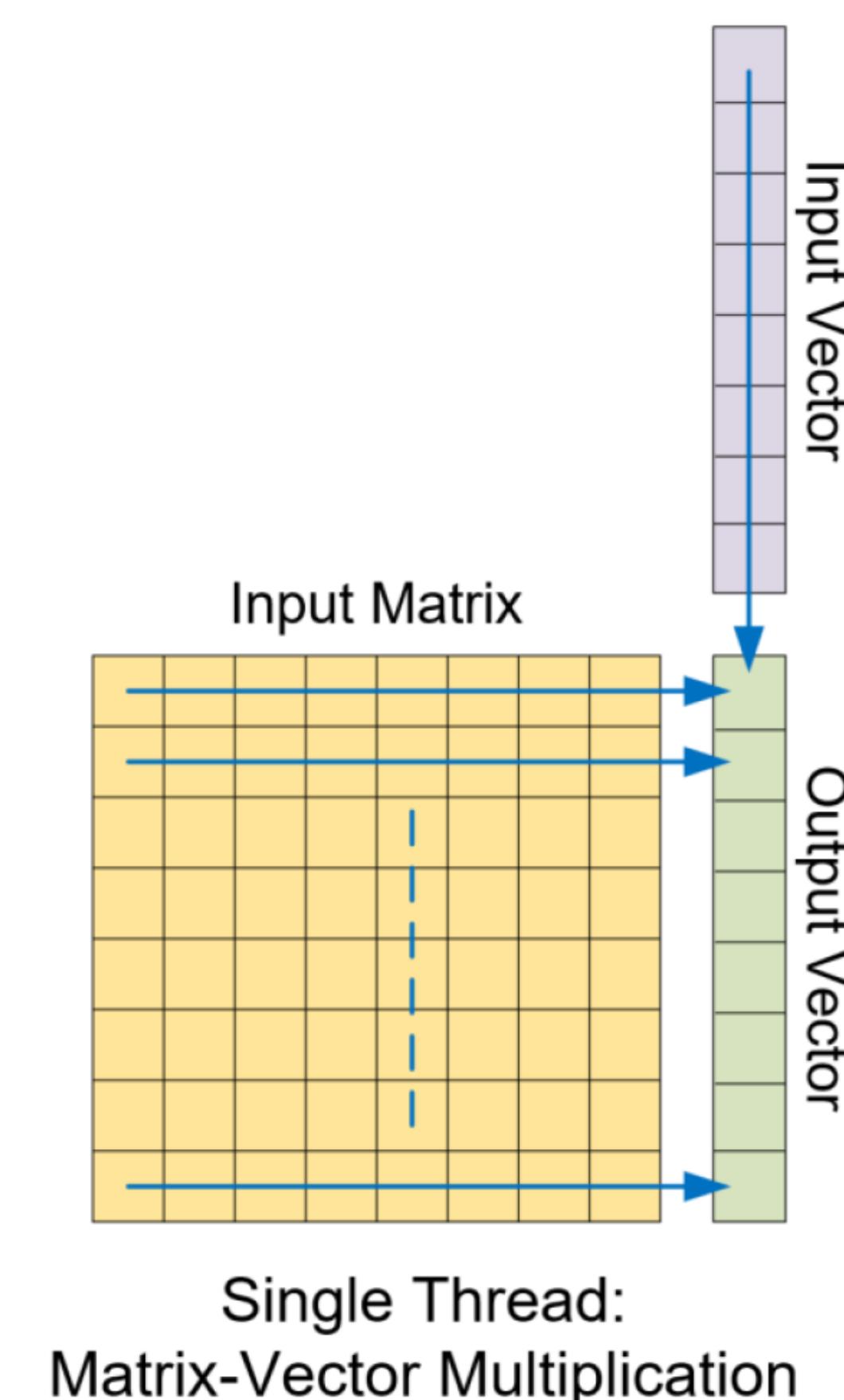
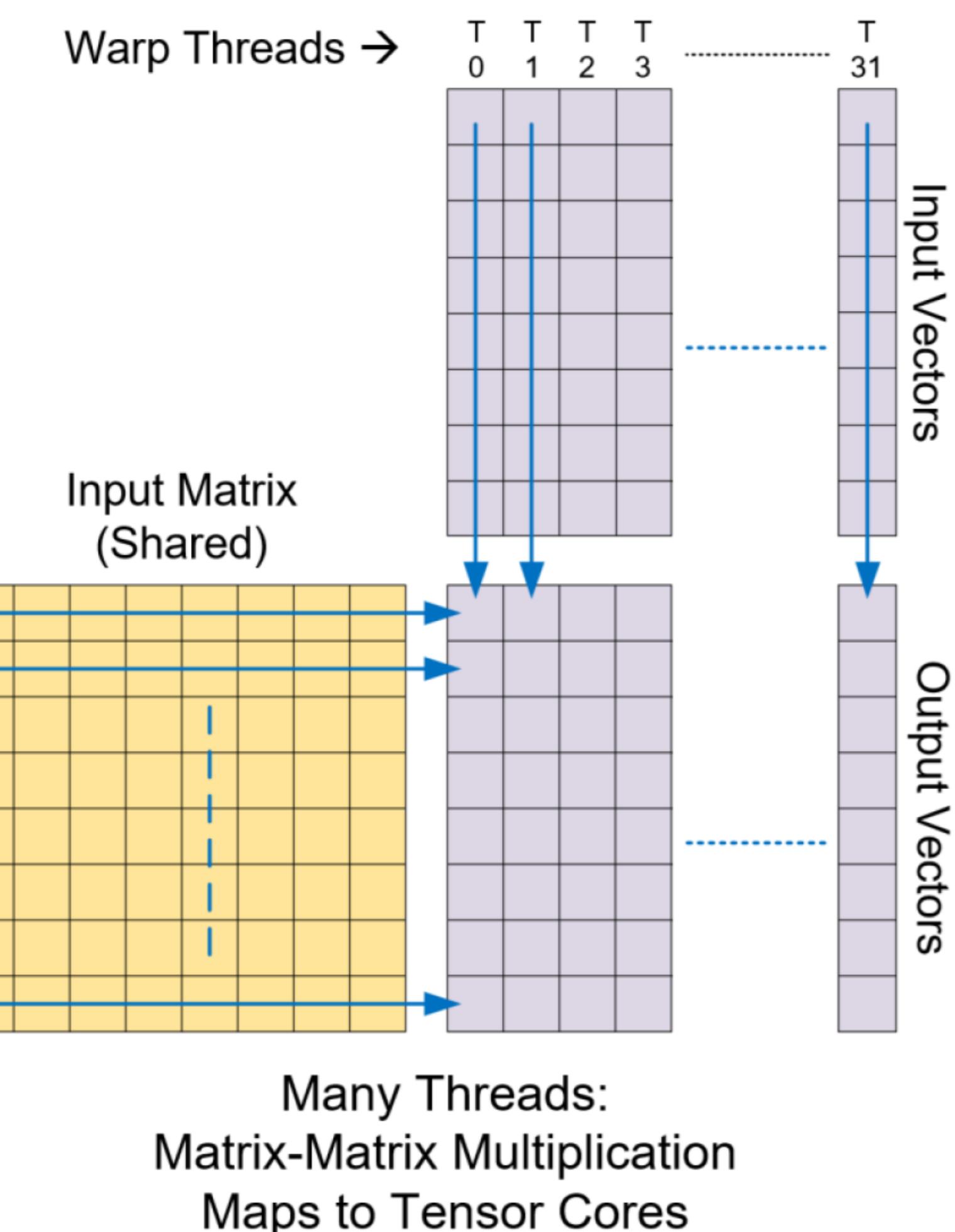
    //Generate output
    CoopVec<half, 4> hiddenParams;
    hiddenParams = coopVecMatMulAdd<half, 4>(inputParams, matrixBiasBuffer, matrixOffset[0],...)
    hiddenParams = activation(hiddenParams)

    CoopVec<half, 3> outputParams;
    outputParams = coopVecMatMulAdd<half, 3>(hiddenParams, matrixBiasBuffer, matrixOffset[1],...)
    return float3(finalActivation(outputParams).xyz);
}
```

# Cooperative Vector

## Mapping to Hardware

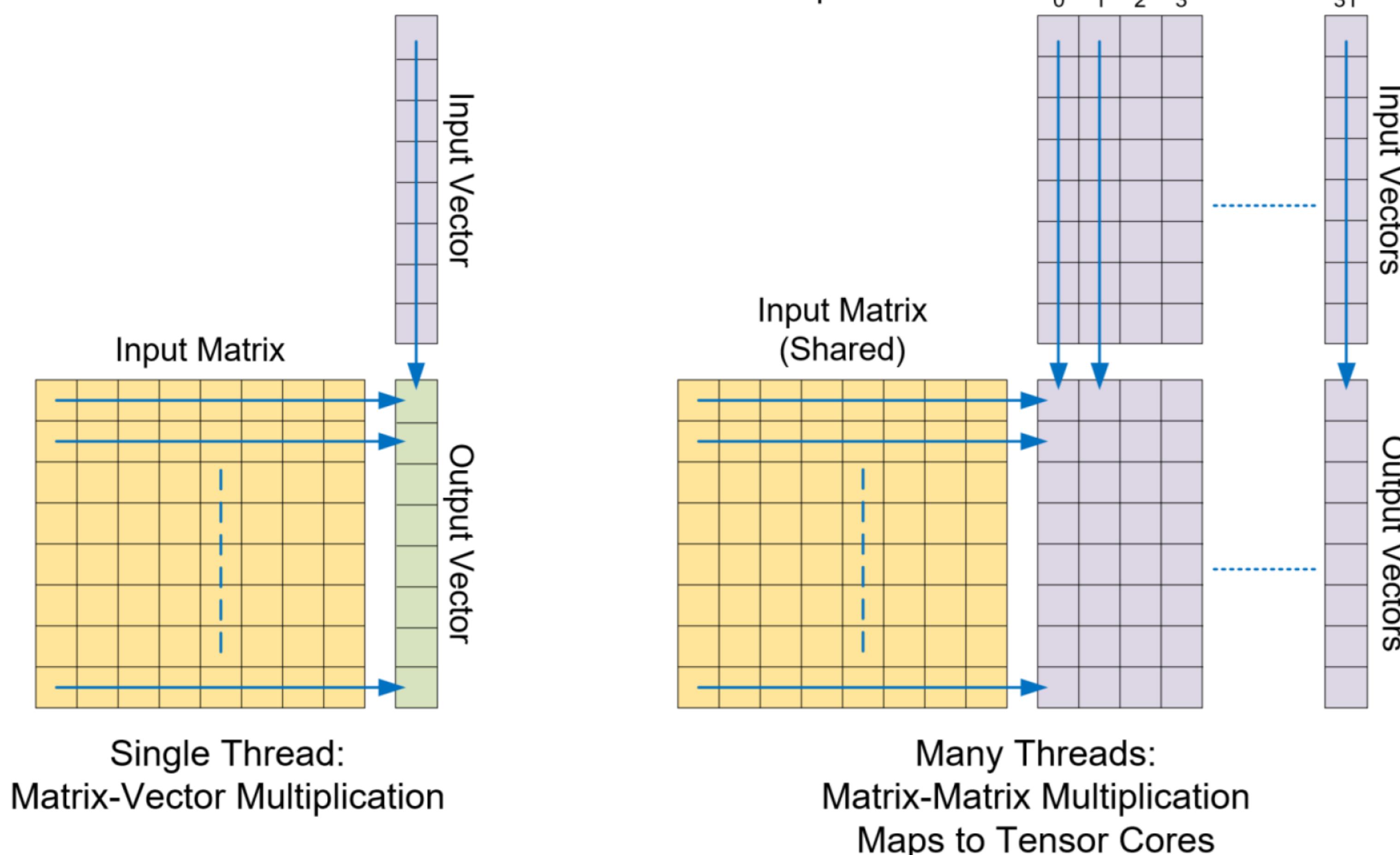
- Hardware Tensor Cores
  - Provides Matrix-Matrix multiplication using entire wave/warp
  - Low precision (FP16, FP8, INT8)
- Cooperative Vector API
  - Provide Matrix-Vector multiplication in each thread



# Cooperative Vectors

## Mapping to Hardware

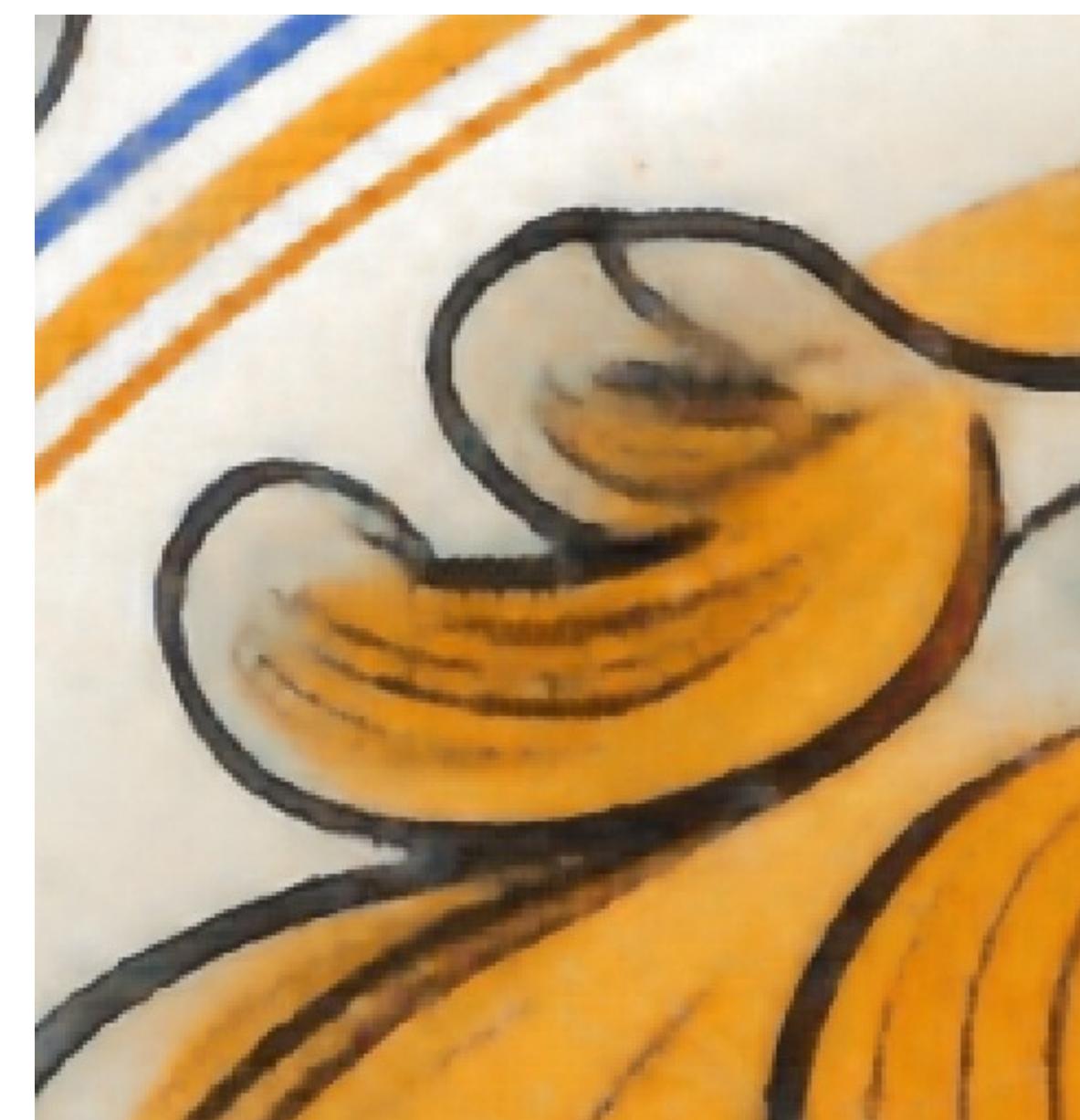
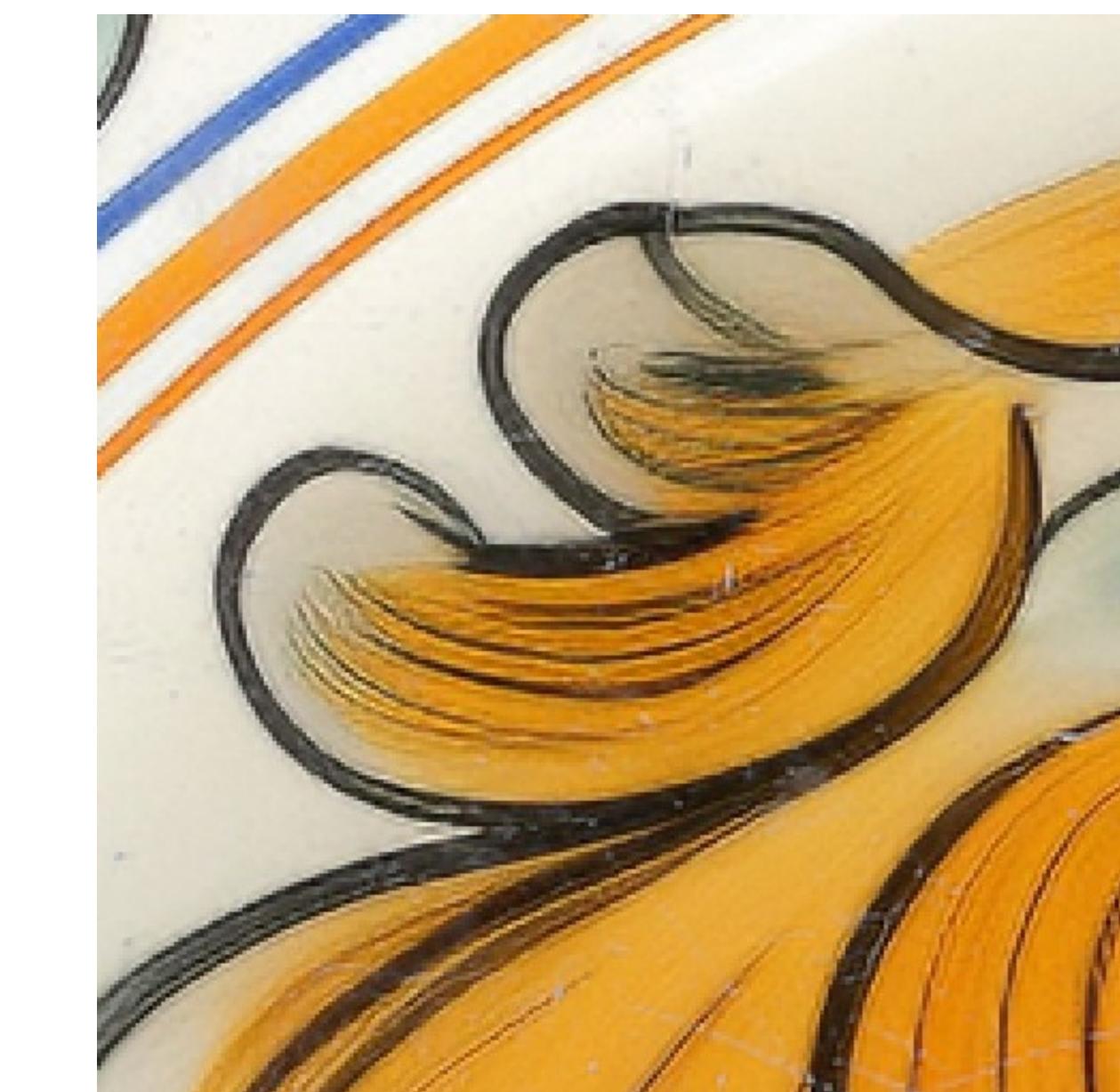
- Cooperative Vector can combine Matrix-Vector multiplications from all threads in a wave / warp into a single matrix.
- This can be evaluated in a single Matrix Multiply Accumulate (MMA) across the entire wave / warp on the Tensor Cores
- However, the shading language allows matrix inputs to be different per thread.
  - If this is the case the driver will transparently serialize the divergent matrix operation.
- For optimal performance, matrix inputs should be consistent across all threads within a wave.



# Applications: Neural Texture Compression

# What is NTC?

- Neural Texture Compression (NTC) is a machine learning-based method for texture storage and reconstruction.
- It encodes textures into compact latent features instead of storing full-resolution texels.
- At runtime, a small neural network reconstructs texture values from the latent features on the GPU.
- NTC is deterministic, not generative.



*Crops from an NTC compressed  
texture at 0.5 and 20.0 bpp*

# Why NTC?

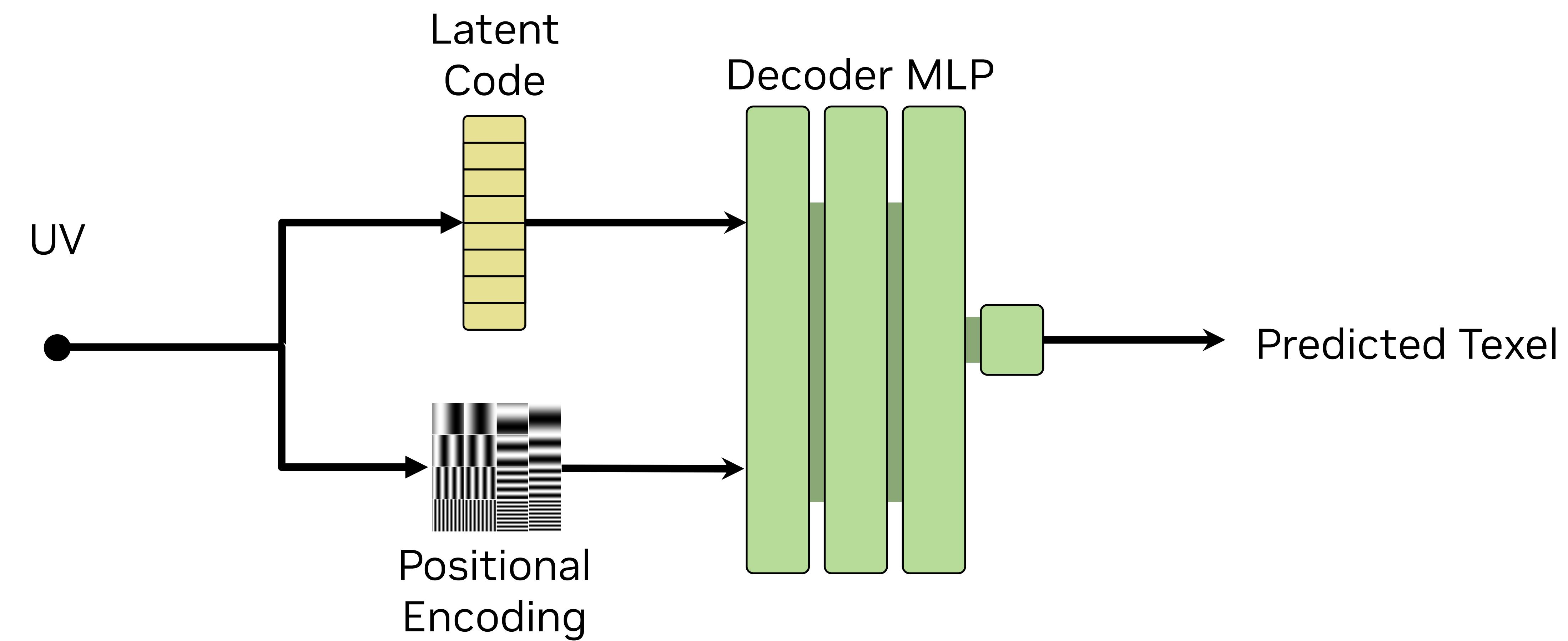
- NTC achieves higher compression ratios than formats like BCn.
- It supports high channel count materials, efficiently compressing multi-channel data
- All while reducing disk footprint and download size via more compact texture storage.

# Latent Textures

- Textures are encoded into latent feature maps, stored as multi-channel neural data rather than traditional texels.
- Each latent texel stores a learned feature vector, capturing material information instead of final color values.
- A neural decoder reconstructs full-resolution textures from these latent features at runtime.
- Latent textures achieve high compression ratios by reducing redundancy and learning shared texture patterns.

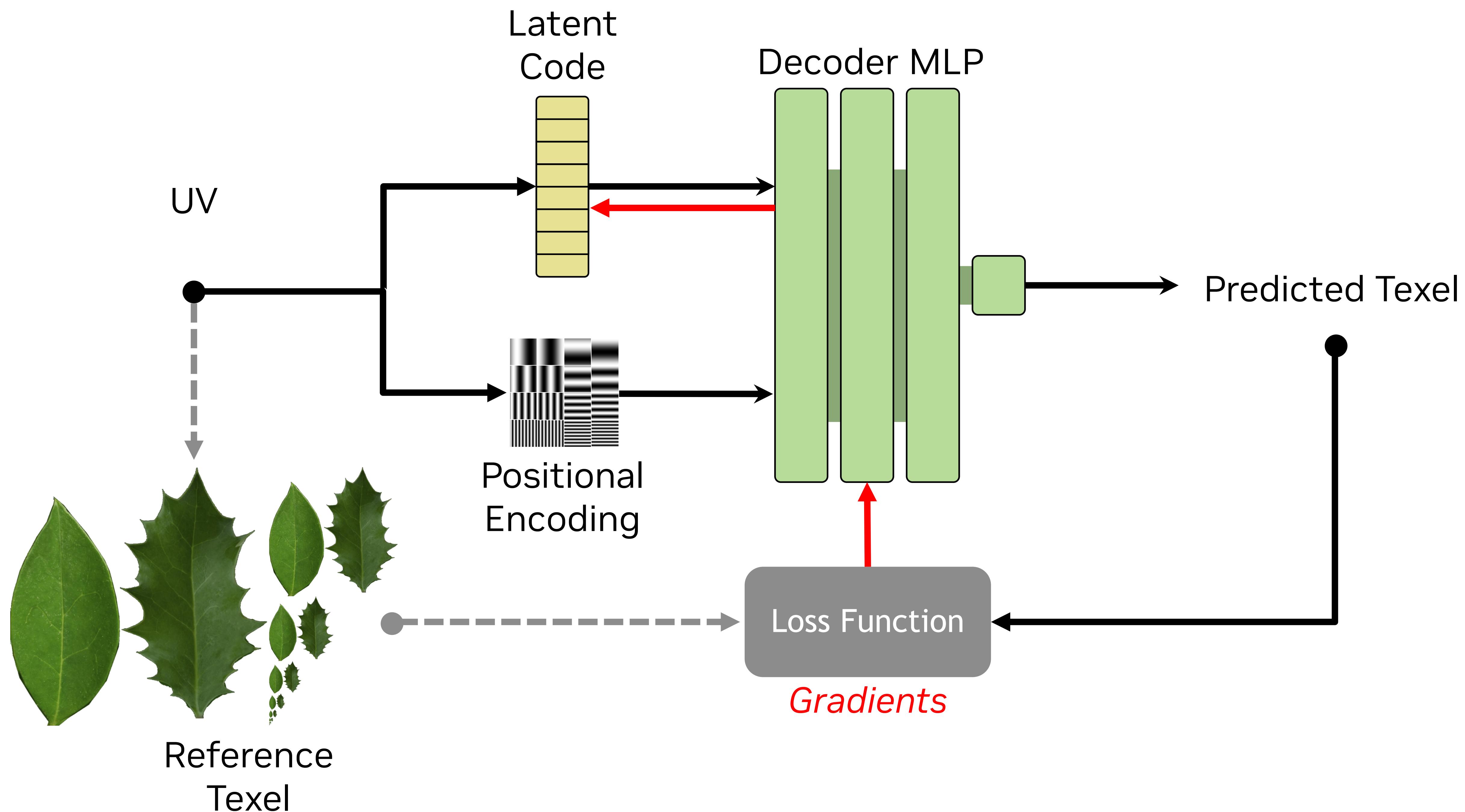
# Learned Reconstruction

Network



# Learned Reconstruction

## Training the Network



# Examples

Tuscan Villa Scene with BCn textures – 6.5 GB VRAM



# Examples

Tuscan Villa Scene with NTC textures – 970 MB VRAM



# Examples

Downscaled BCn Textures – 970 MB VRAM



# Examples

Full Resolution NTC Textures – 970 MB VRAM



# Examples

## Quality Comparison



# Neural Texture Compression

## Benefits

### Practical

- Reduces disk footprint, lowering install and patch sizes
- Lowers download bandwidth requirements, enabling faster content delivery.
- In some use case, decreases VRAM usage by storing textures as compact latent data.
- Can be used now
  - SDK available: [github.com / NVIDIA-RTX / RTXNTC](https://github.com/NVIDIA-RTX/RTXNTC)



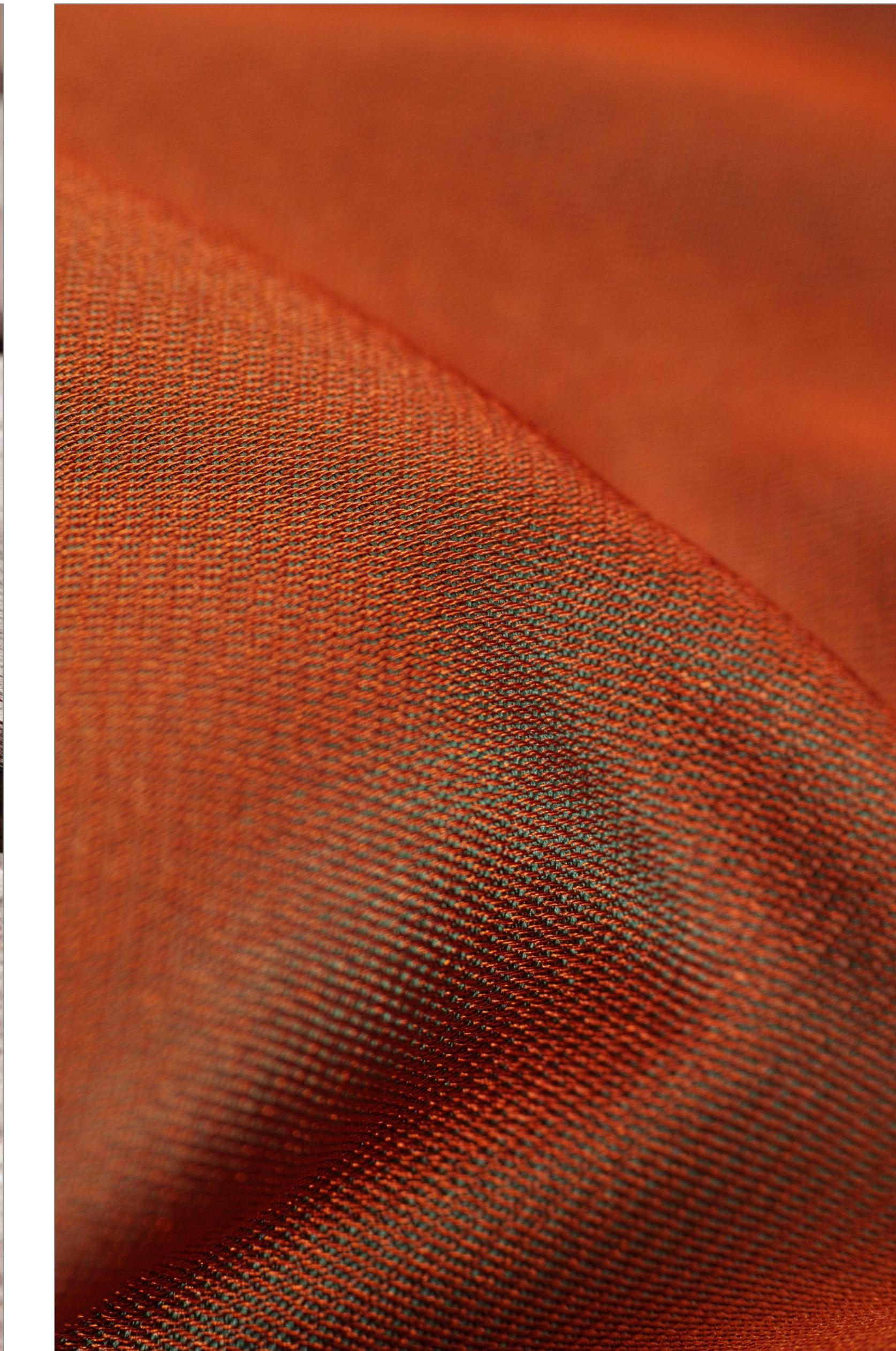
### Conceptual

- Enables higher detail materials within the same memory budget.
- Can be extended with perceptual loss functions for higher compression ratios with better visual detail

# Applications: Neural Materials

# Real Materials

## Inspiration



# Materials

We can render such complex materials BUT not in real time



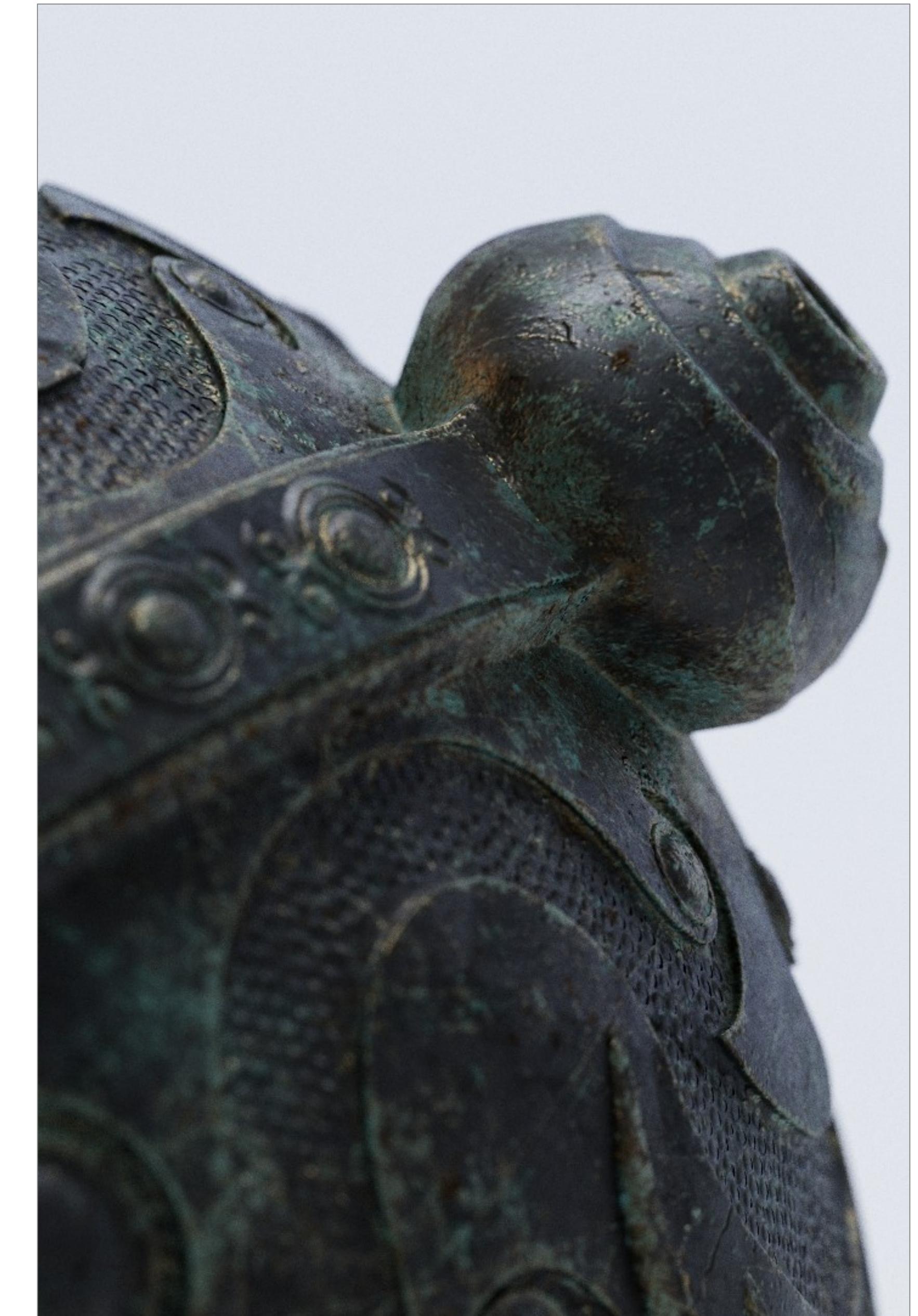
Blue Teapot Ceramic



Metal Teapot Handle



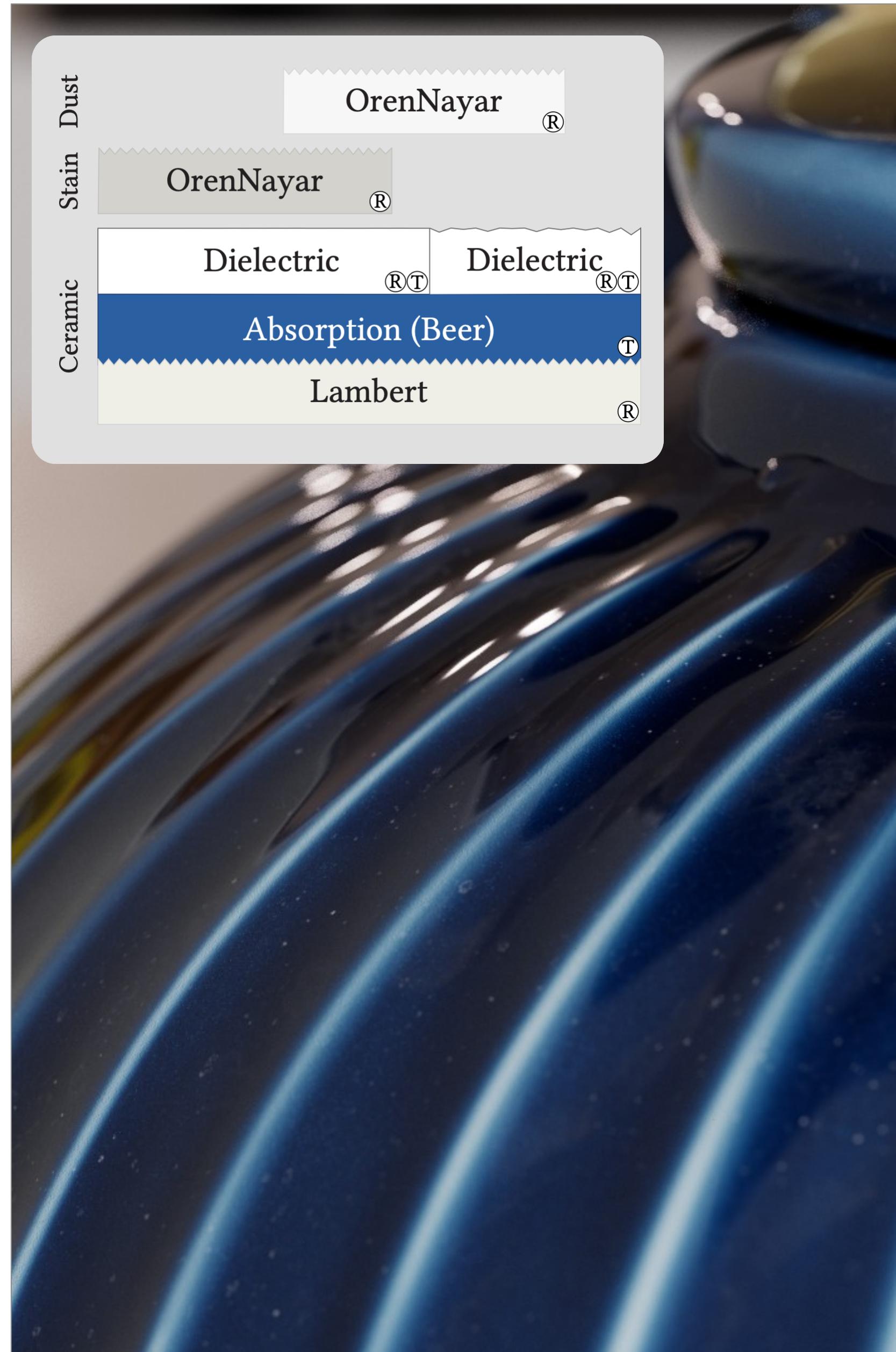
Metal Slicer Blade



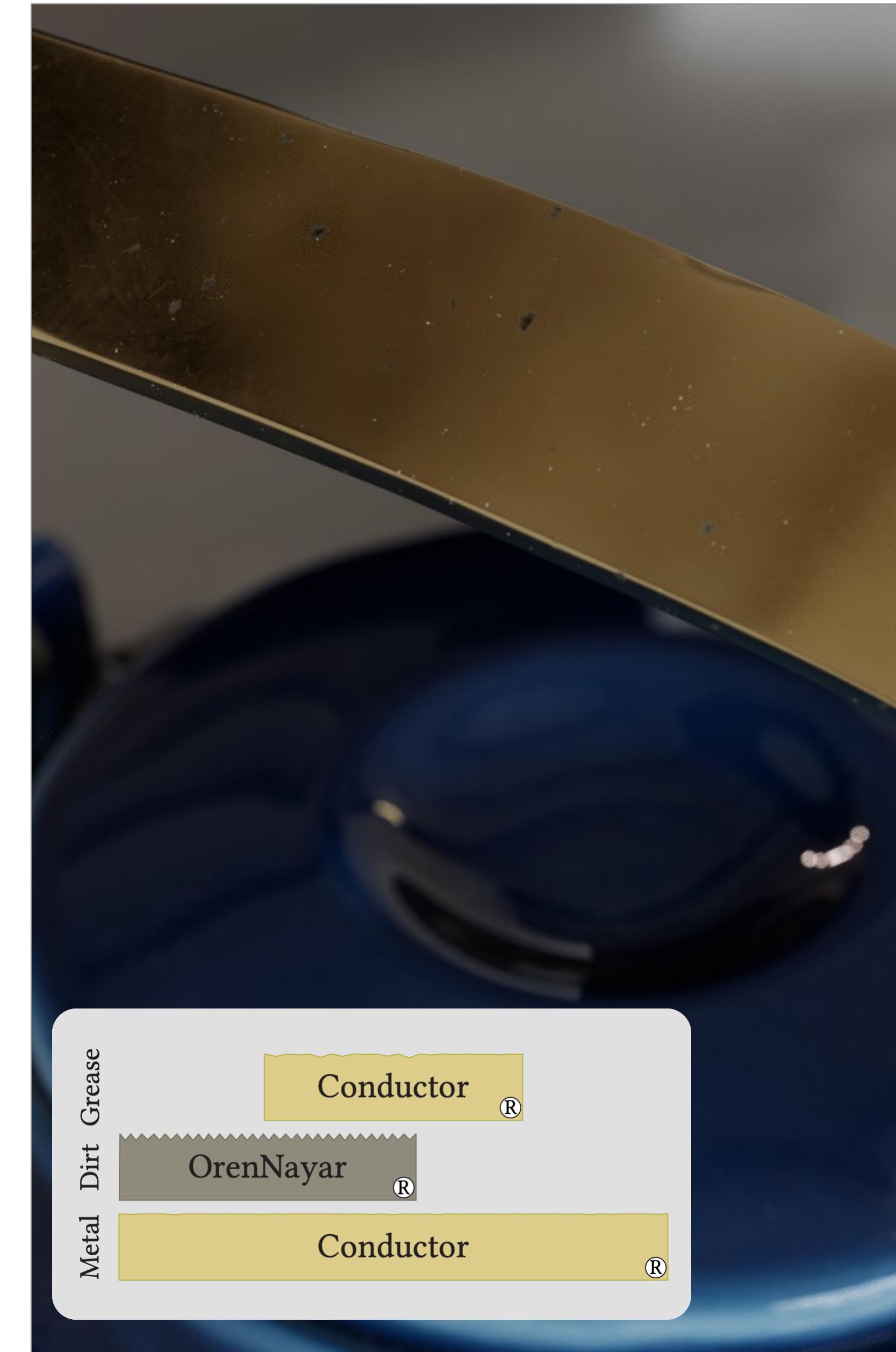
Aged Metal Inkwell

# Materials

These are complex materials graphs



Blue Teapot Ceramic



Metal Teapot Handle



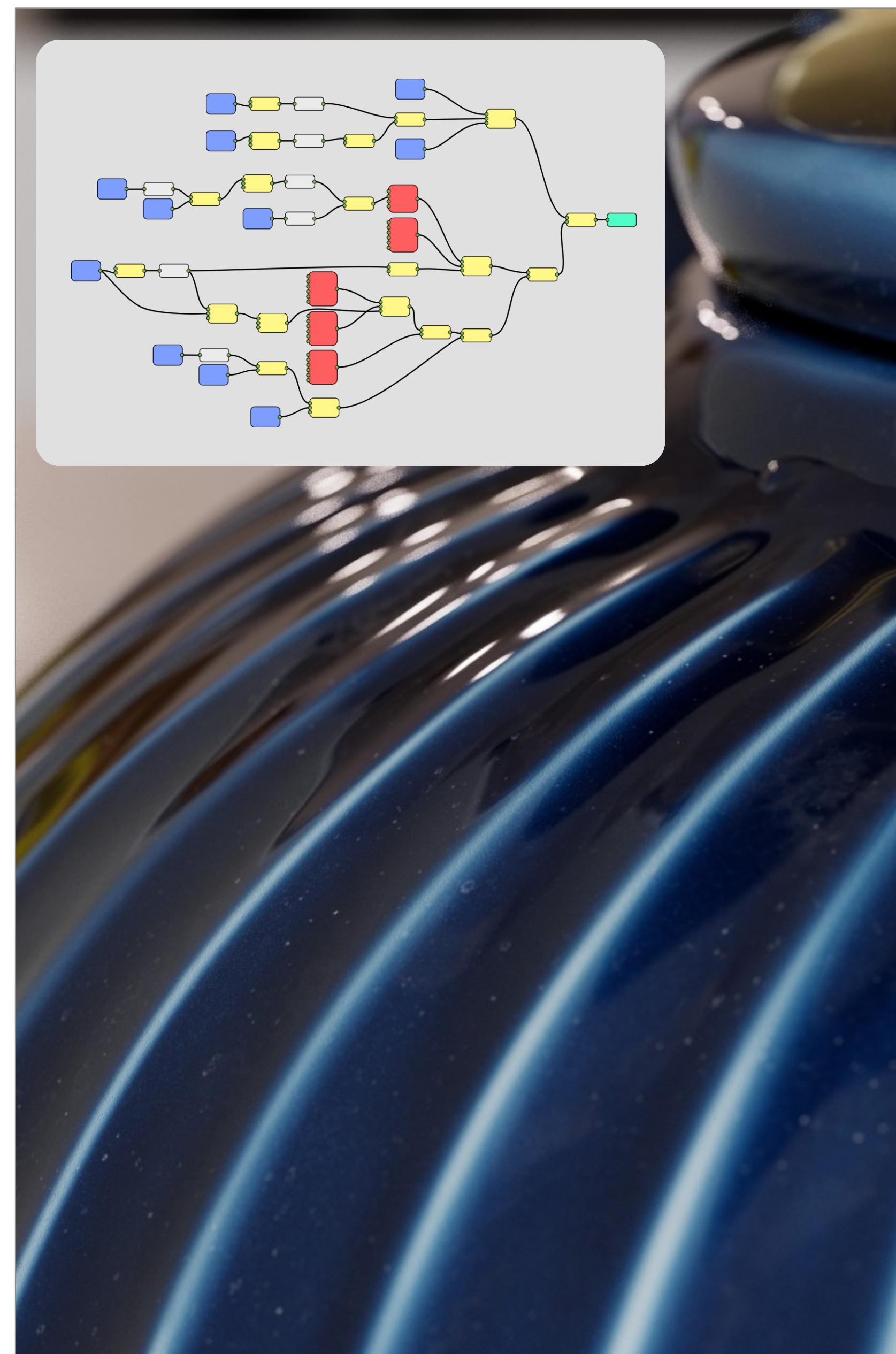
Metal Slicer Blade



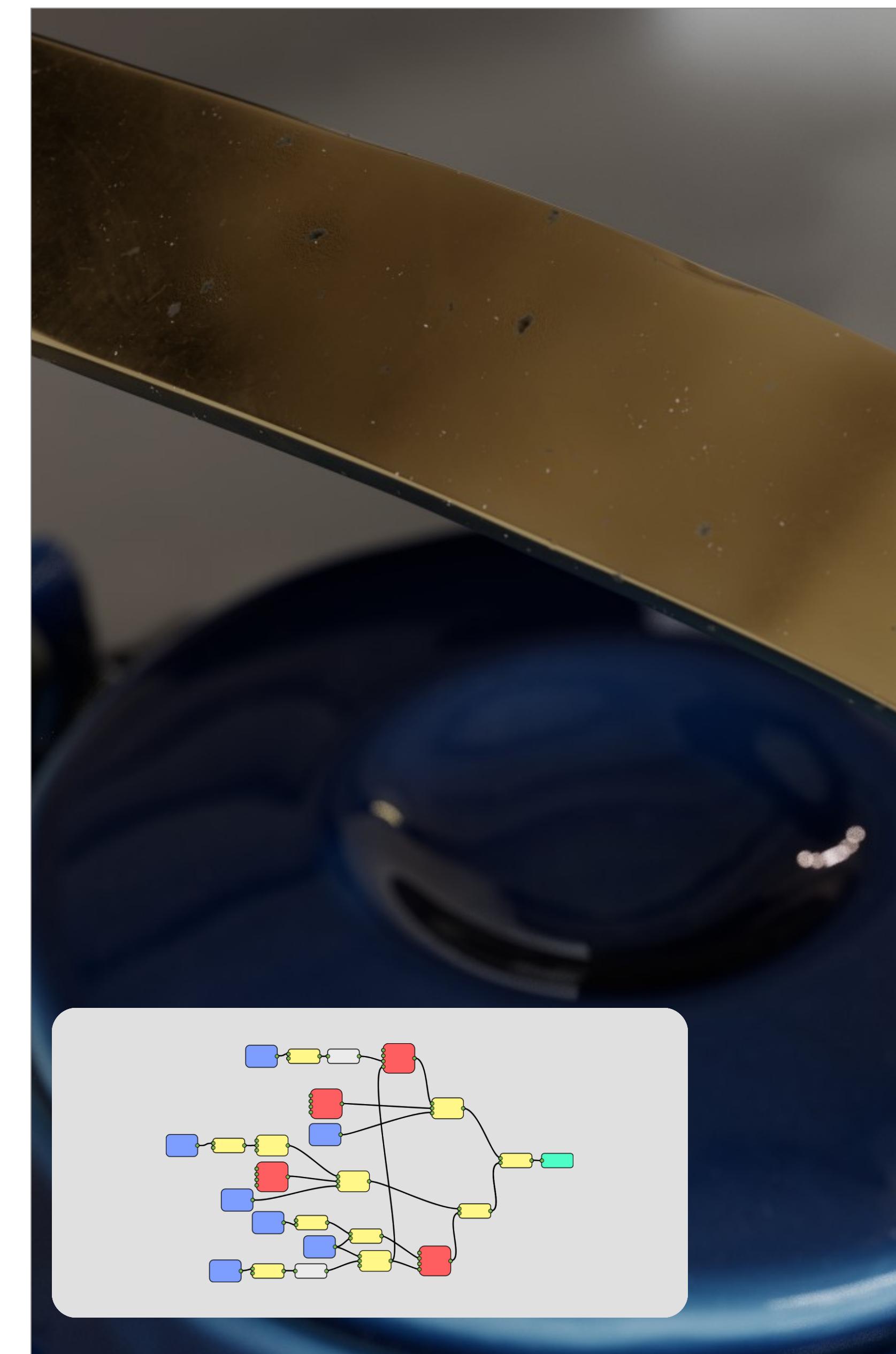
Aged Metal Inkwell

# Materials

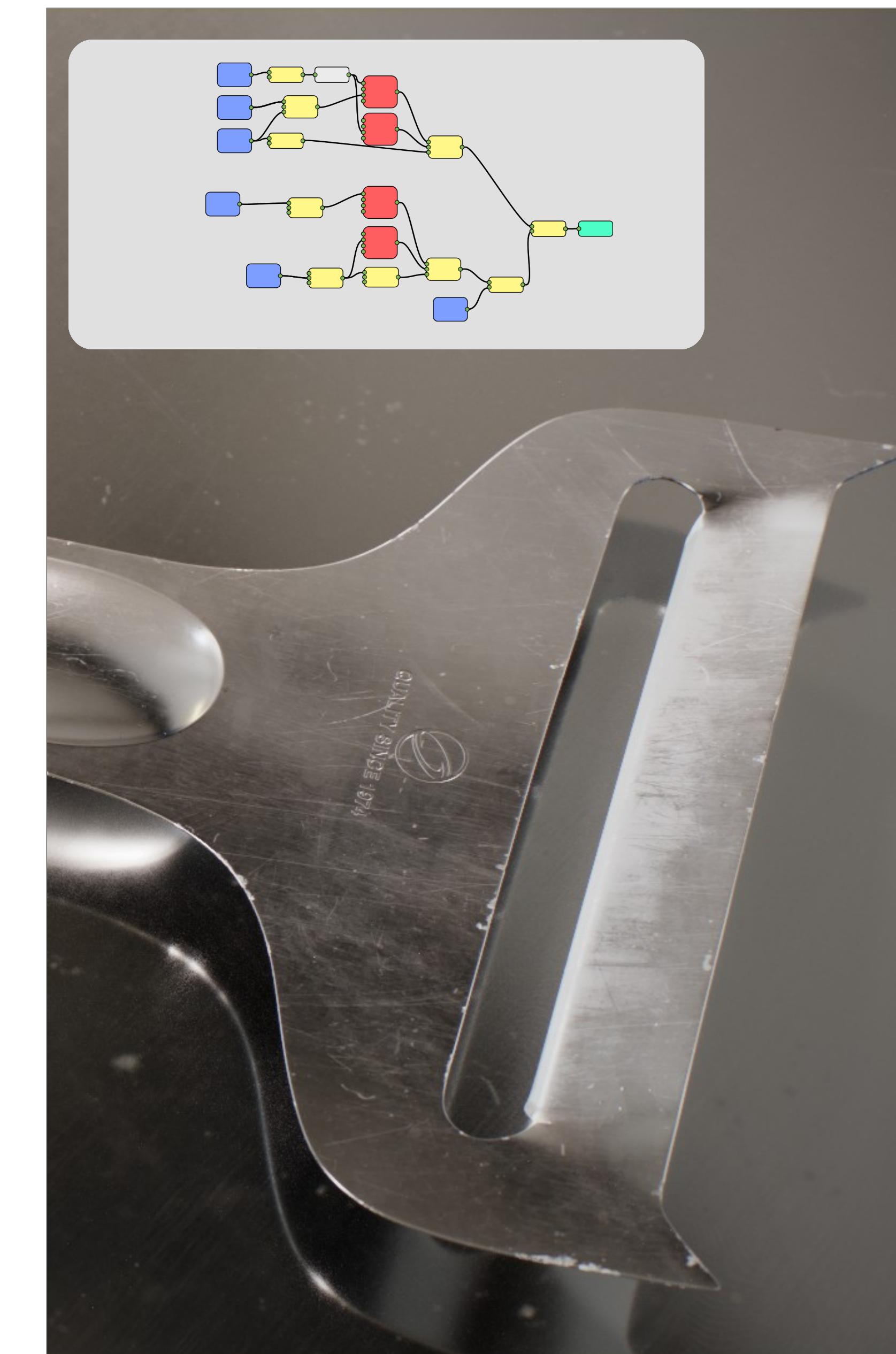
Which we don't know how to simplify



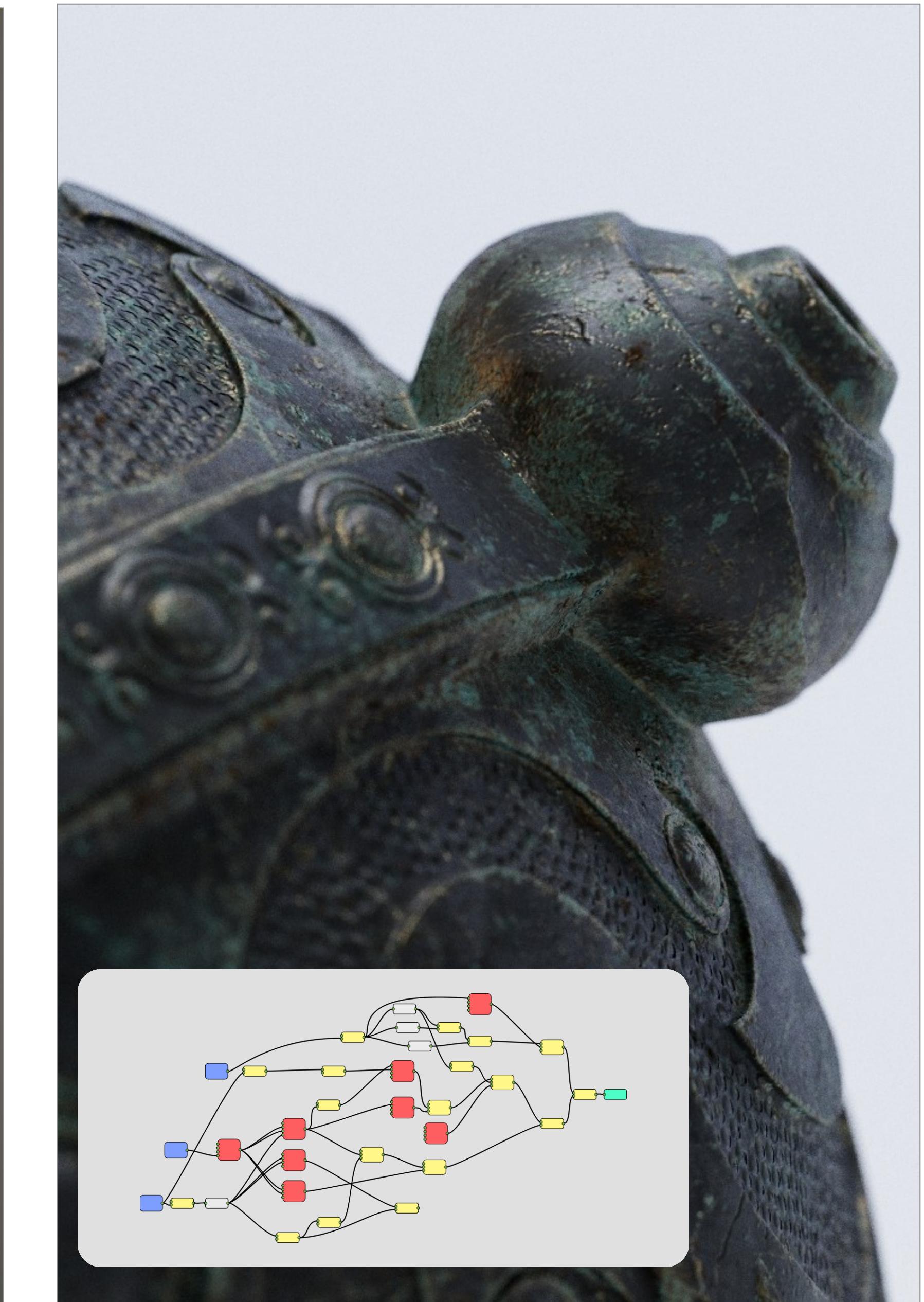
Blue Teapot Ceramic



Metal Teapot Handle



Metal Slicer Blade



Aged Metal Inkwell

# What are Neural Materials?

- Neural Materials represent material appearance using learned neural features instead of hand-authored parameters.
- They compress many material channels into a compact latent representation for efficient storage and streaming.
- This enable richer, more detailed materials within the same memory and bandwidth budget.



# What Makes a Material Realistic?

- Let's look at this material in more detail
- Artists have long understood that achieving realism in CG materials means combining multiple material layers, each capturing a different light-reflection behaviour.





1 Base Ceramic



2 Gold Vapor



3 Glazing



4 Dust



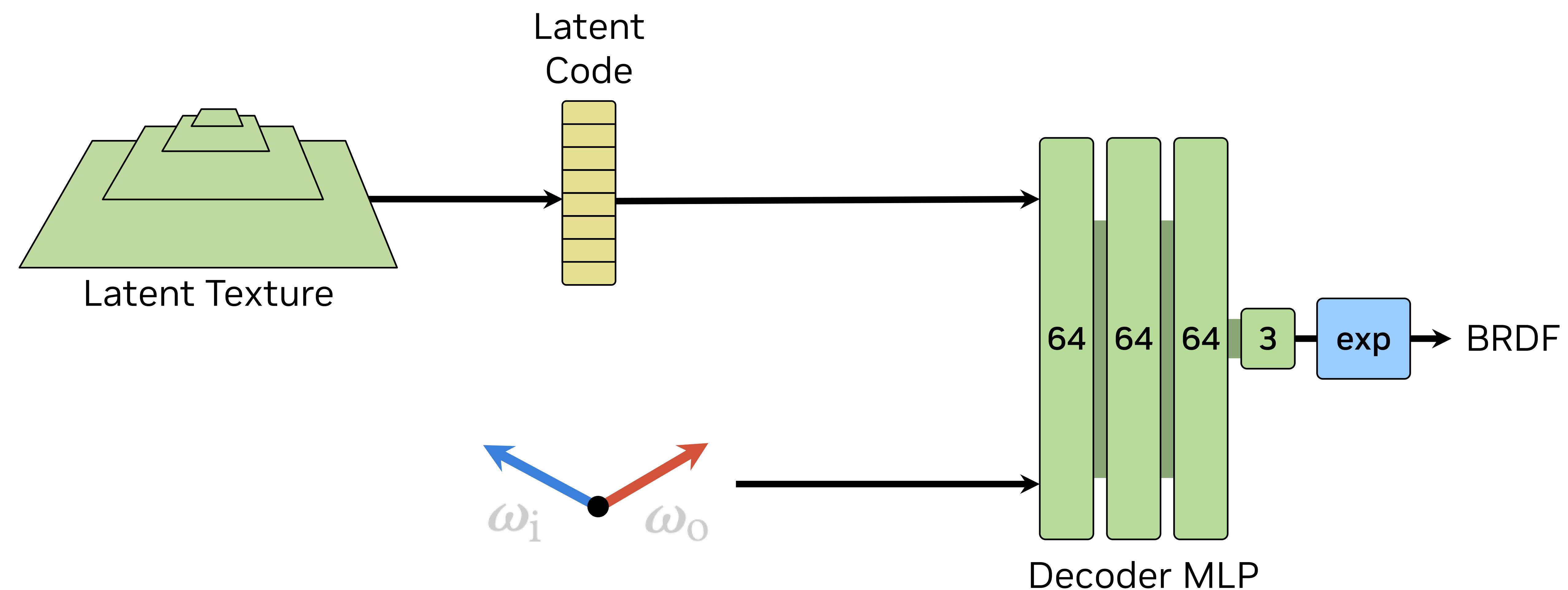
Graphics Programming Conference, November 18-20, Breda

2025

# Neural Materials

## Training

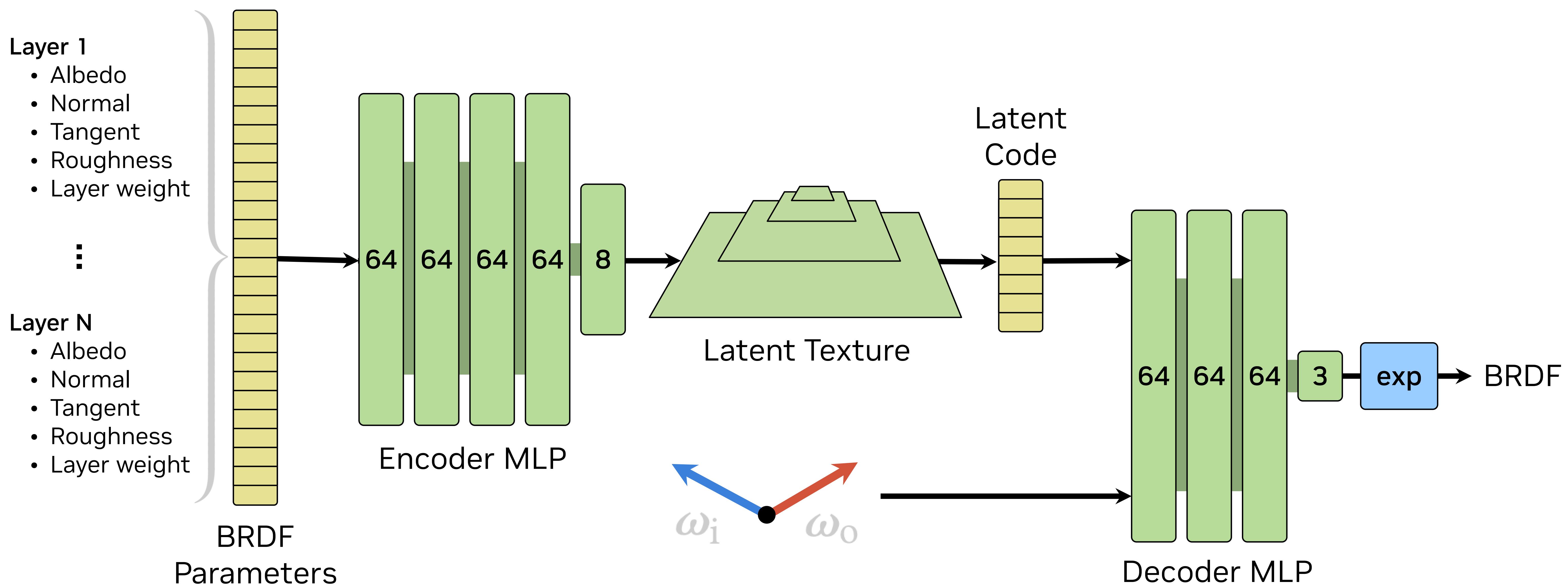
- What if we used a neural network to represent a material, how would we train it?



# Neural Materials

## Improving Training

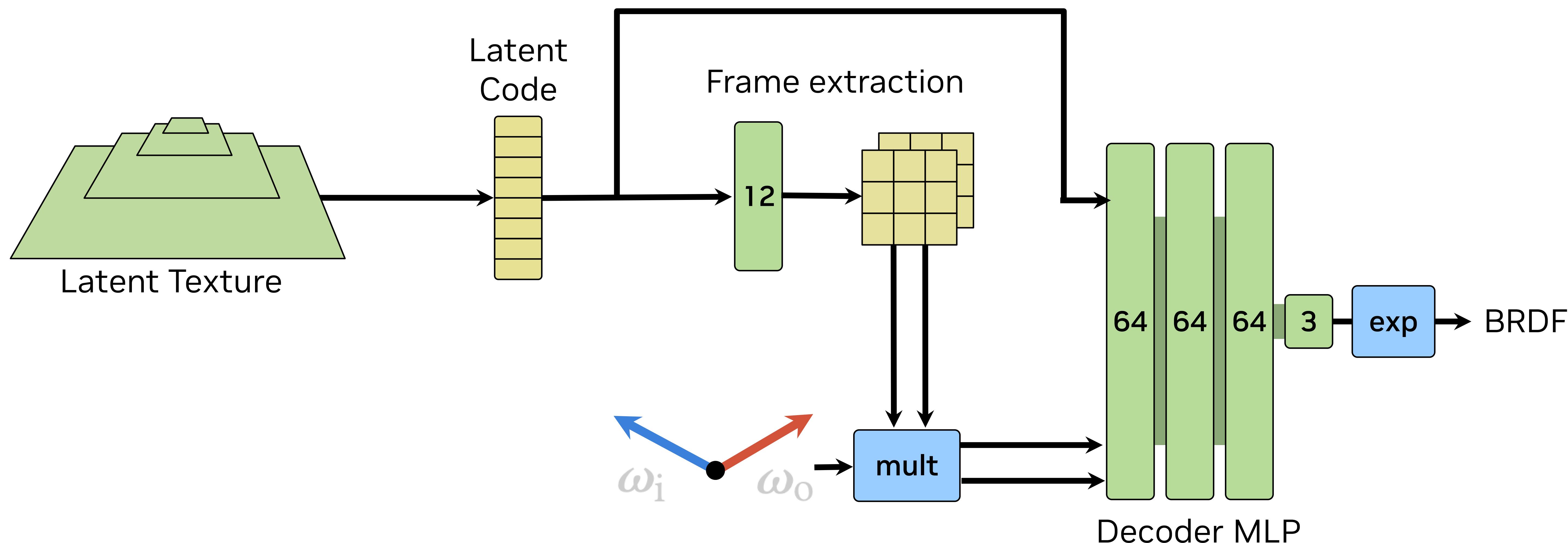
- We can extend this model to better represent the input texture



# Neural Materials

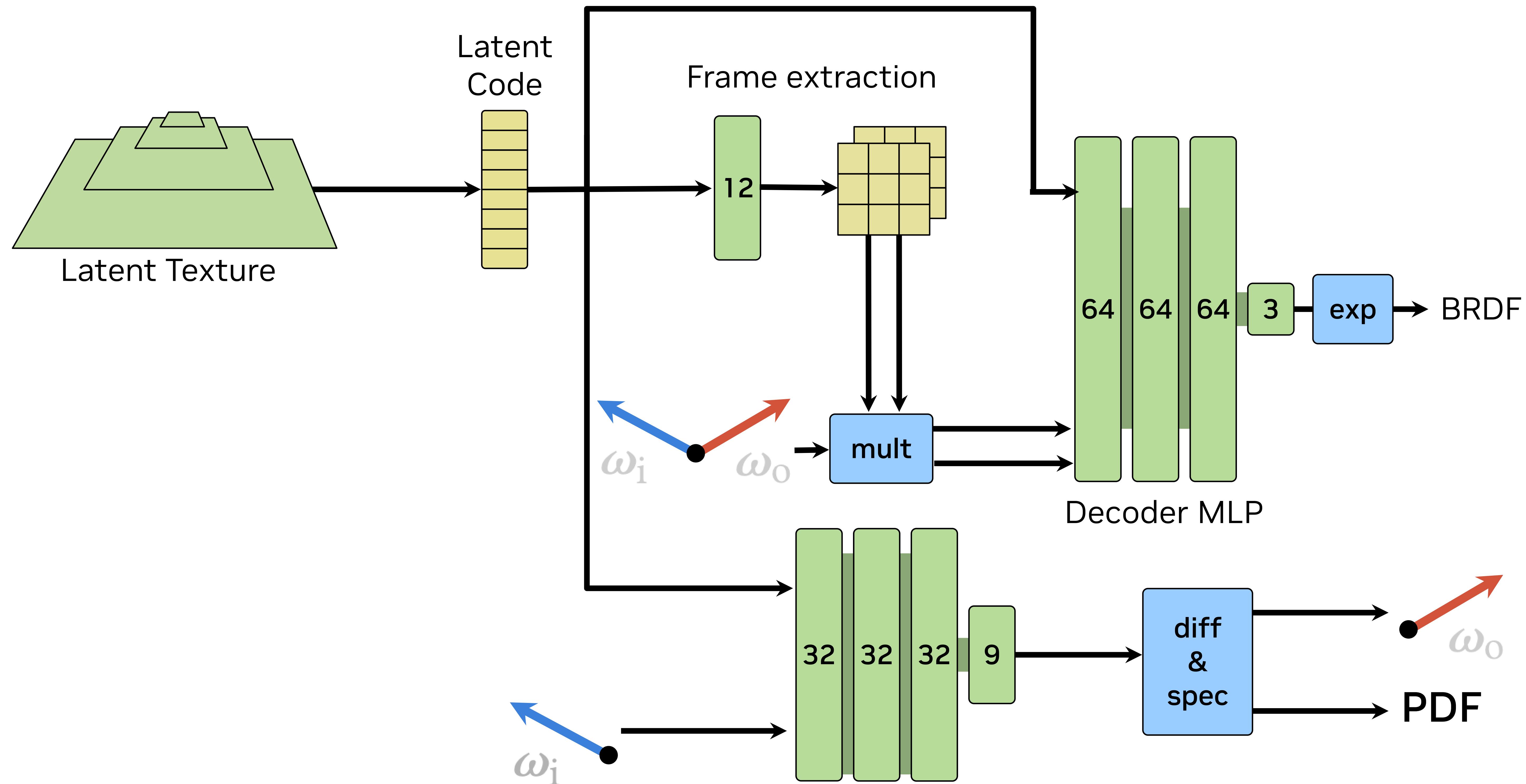
## Improving the Network: Normal Maps

- Complete BRDF prediction is a little more involved than just a simple MLP. Let's improve the network



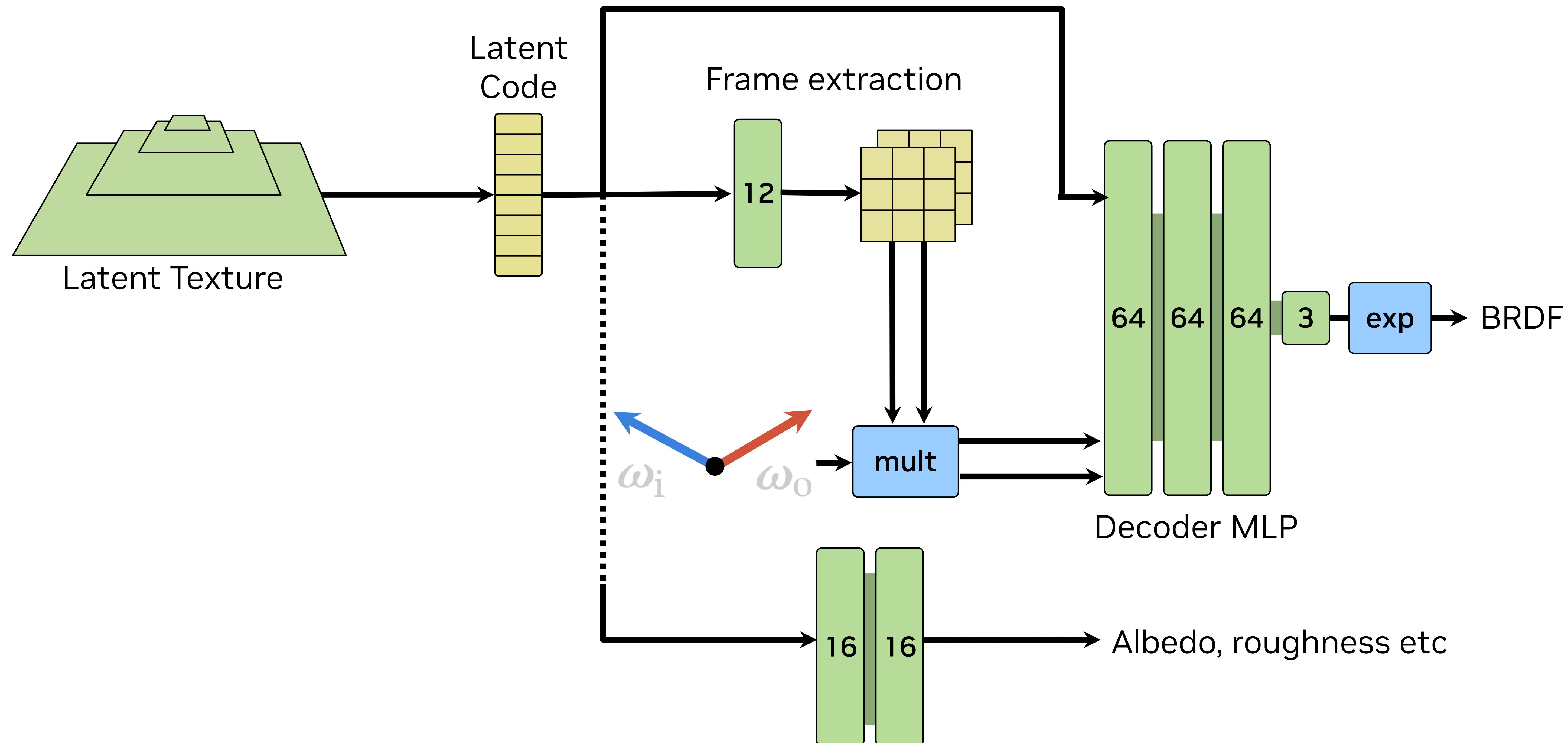
# Neural Materials

## Auxiliary Networks: Importance Sampling



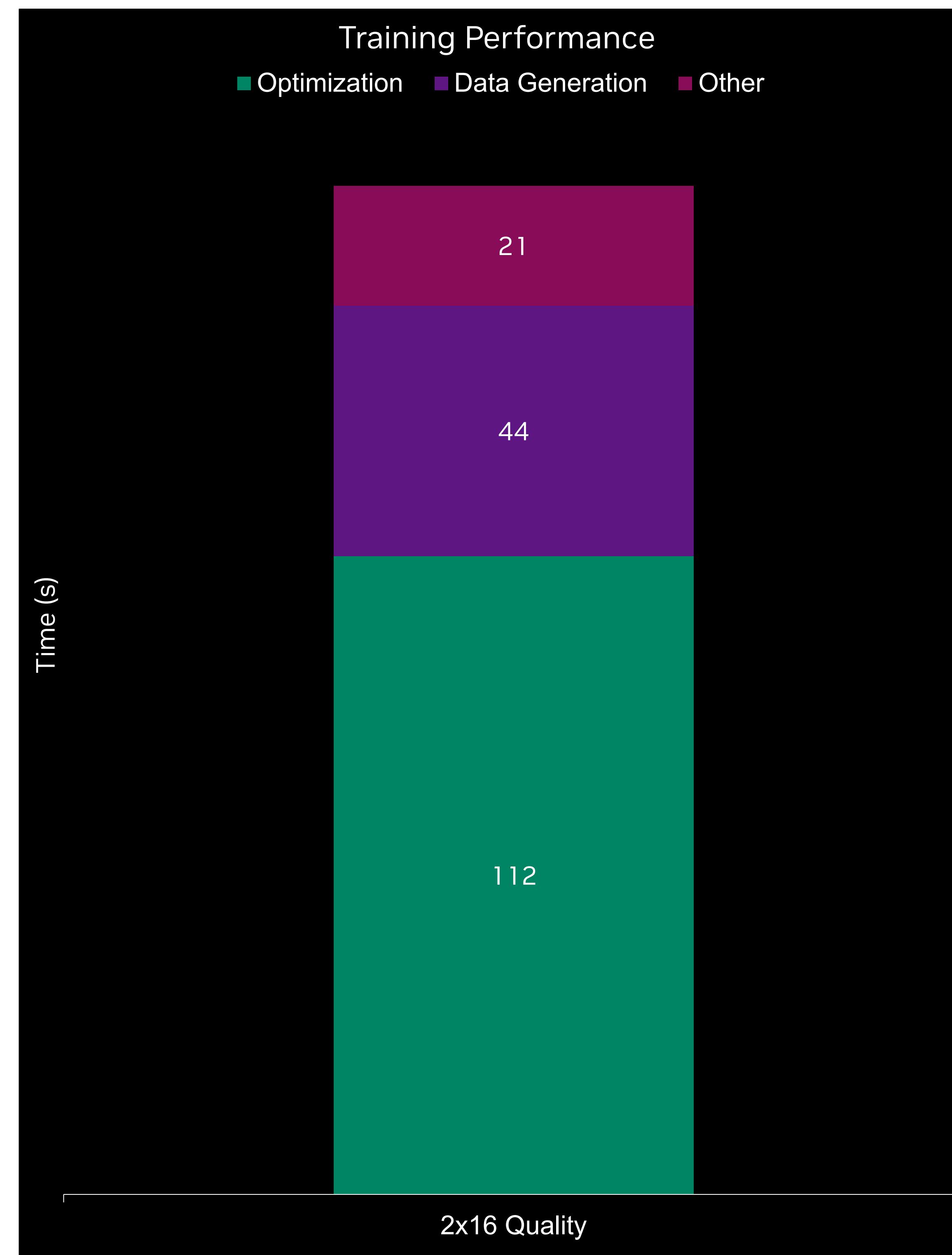
# Neural Materials

## Auxiliary Networks: Denoiser Inputs



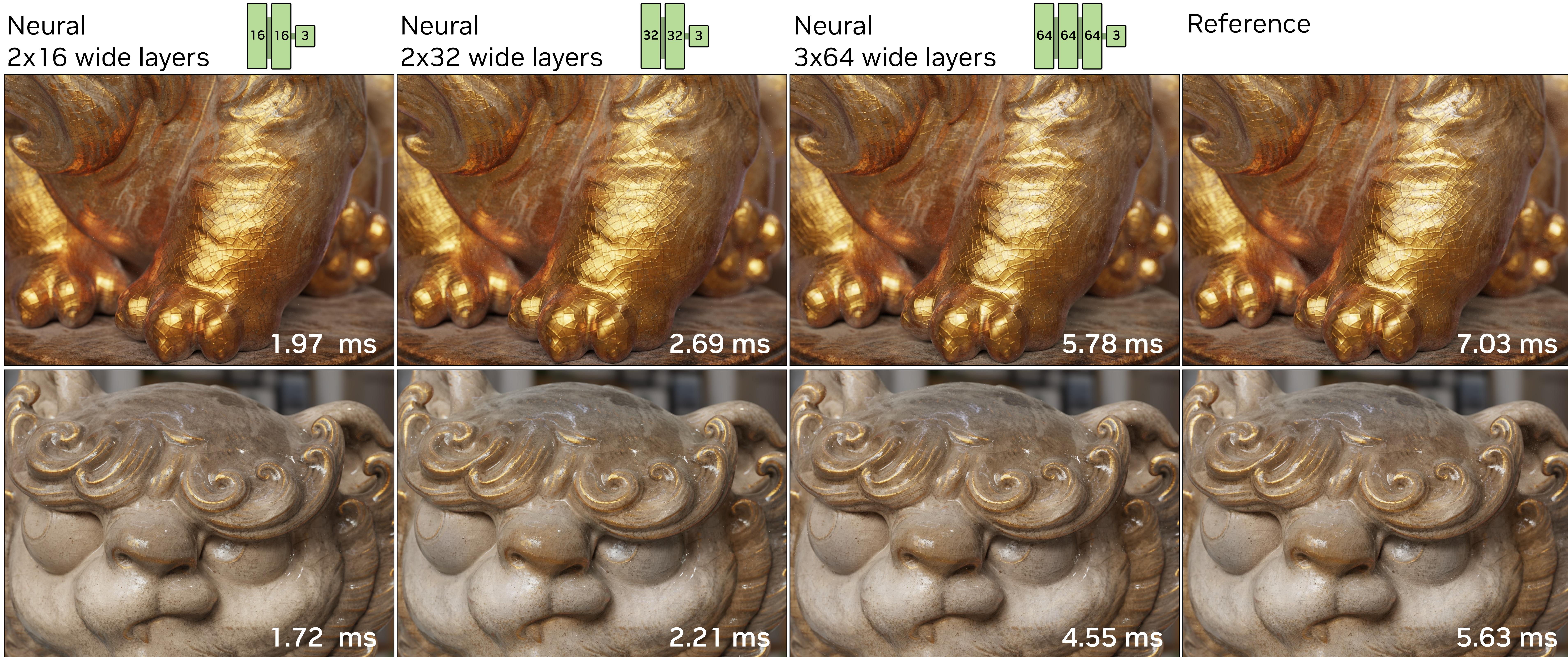


# Training Performance



# Inference Performance & Quality Comparison

RTX 5090, 2k, fully path-traced



# Reference Quality & Performance Comparison

RTX 5090, 2k, fully path-traced

Reference



7.03 ms

Reference



7.03 ms

Reference



7.03 ms

Reference



7.03 ms



5.63 ms



5.63 ms



5.63 ms



5.63 ms

# Performance

## Why Neural Materials Are Faster?

Neural Materials replaces heavy BRDF math and multiple texture reads with a lightweight neural decoder.

- They avoid complex analytic BRDF evaluations
- They reduce memory traffic by collapsing several multi-channel textures with a compact multi-channel latent texture
- It computes all material layers in a single, efficient pass.

# Neural Materials

## Benefits

Neural Materials brings high quality complex materials to real time rendering.

- Encodes complex material properties into compact neural representations.
- Reduces texture size and bandwidth while maintaining visual fidelity.
- Enables real-time rendering of high-quality materials learned from data.



# Call to Action



Graphics Programming Conference, November 18-20, Breda

2025

## Call to Action

- Neural shading is not difficult it is just new!
- We are in the exploration phase of the technology.
- If you would like to learn more pull the Neural Shading SDK and SIGGRAPH course.
- Try experimenting for yourself!

# Getting to know Slang

16:00 Secondary Room



# Resources

- **RTX Neural Shading**
  - <https://github.com/NVIDIA-RTX/RTXNS>
- **Neural Shading Course SIGGRAPH 2025**
  - <https://research.nvidia.com/labs/rtr/publication/duca2025neural/>

