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Introduction 



Why Neural Shading?

• Real-time rendering is about approximating reality with the highest fidelity possible within 16 or 33 milliseconds per 
frame.

• This pursuit has driven over 40 years of increasingly complex graphics pipelines and shader code.

[Cook, 1984] 2000 2007 2019
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What is Neural Shading?

• Neural Shading integrates machine learning into the 
real-time rendering pipeline, replacing or augmenting 
traditional shading functions with learned neural 
networks.

Neural
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What is Neural Shading

Neural Shading 
• Utilises a neural network 

• Anything that is 

trainable 

• Runs in the graphics 

pipeline

• Part of the normal 

shading code



Harnessing Neural Hardware

• Modern consumer GPUs include neural network 
accelerators that remain idle during traditional 
rendering.

• Neural Shading allows us to harness these accelerators 
through Cooperative Vectors, integrating neural 
computation directly into the graphics pipeline.



Classical vs. Neural Shading

• Real-time rendering has always relied on approximate 
mathematical solutions to simulate physically accurate 
effects.

• Classical engineering methods depend on these 
analytical models, but many shading problems are too 
complex or costly to express accurately. 

• Neural Shading learns these complex relationships 
directly from data, bypassing the need for explicit 
analytical solutions.

Neural
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Core Concepts 



Learned Function 
Multilayer Perceptron

• We model the learned shading functions using small Multilayer Perceptron (MLP) networks.

• An MLP is composed of many interconnected neurons, each performing a weighted sum of its inputs followed by a nonlinear 
activation.

• A network is structured with an input layer, one or more hidden layers and an output layer.

• Each network is trained during prior to rendering to approximate reference shading data.

• During rendering, shaders execute MLP inference on the GPU to evaluate shading results in real time.



Training
Forward Phase

• During forward phase of training, the network takes inputs and produces a predicted output. This result is compared 
to the desired output to calculate an error, providing a measure of how closely the model reproduces the target 
shading or visual appearance.

Provide input Generate output
Calculate error against 

desired output



Training
Backwards Phase

• The calculated error is backpropagated through the network to compute gradients, which update the network’s 
parameters to better match the target shading.

Provide input Generate output
Calculate error against 

desired output

Adjust the parameters



Optimizer
Backwards Phase

 

• Once gradients are calculated, an optimizer uses them to adjust the network’s weights and biases in order to minimize 
the loss.

• The simplest form is Stochastic Gradient Descent (SGD), which updates each weight by subtracting the gradient 
scaled by a learning rate.

• Adam improves on SGD by adapting the learning rate for each weight using momentum and gradient history, leading 
to faster and more stable convergence.



Inference
Forward Phase

• During inference, the trained network takes the inputs and produces a final shading output directly, using the 
parameters learned during training.

Provide input Generate output



First Neural Shader 



• Python/C++ interface to Slang

• Full featured graphics api

• Cross platform

• Functional api to directly call Slang functions from 
Python

Tools

• Powerful / flexible shading language

• Write once / run anywhere

• Compiles to SPIR-V and DXIL 

• Generics

• Supports ‘auto-diff’ (does calculus for us)

• Very useful for developing



MLPs in Shaders
Forward Pass

• Let’s use our simplified model to train a network that generates the pixels of a texture 

Provide input Generate output
Calculate error against 

desired output

float2 uvCoordinates; float3 predictedColor; float3 error = predictedColor 
- actualColor;



MLPs in Shaders
Shader Code

• In shader code, MLPs are implemented directly within the regular shading stage:

 

float3 loss(uint2 uvCoordinates, float3 actualColor)

{

 // Generate output

 float3 predictedColor = forwardPass(uvCoordinates); 

  

 // Calculate error

 float3 error = predictedColor - actualColor;

 return error * error; // squared error

}

 



MLPs in Shaders
Backwards Pass

• Now we must close the training loop by backpropagating the error through the network to generate gradients and 
adjust the network parameters accordingly.

Provide input Generate output
Calculate error against 

desired output

Adjust the parameters



Training MLPs in Shaders
Differentiation 

Inference

• We have our loss function:

float3 loss(uint2 uvCoordinates, float3 actualColor)

{

    // Generate output

        float3 predictedColor = forwardPass(uvCoordinates); 

  

        // Calculate error

        float3 error = predictedColor - actualColor;

        return error * error; // squared error

}

Backwards

• How do we differentiate the loss function? 

• In HLSL we will need to manually derive it.

• But with Slang, we can let the compiler derive it!

bwd_diff(loss)( /* ... */ );

• This saves a great deal of time and effort during the 
experimentation stage of training a neural network 



Training MLPs in Shaders
Gradients

• We can now derive the gradients

void calculateGradients(uint2 uvCoordinates)

{

 // Generate output

 float3 predictedColor = forwardPass(uvCoordinates); 

 

 // Get desired output 

 float3 actualColor = inputTexture[uvCoordinates].rgb;

 

 // Calculate error

 bwd_diff(loss)(uvCoordinates, actualColor);

}



Training MLPs in Shaders
Optimizer

• With the gradients we now iterate through each of the weight and bias adjust them accordingly 

float optimizerStep(float weightBias, float gradient, float learningRate)

{

 float updatedWeight = weightBias – learningRate * gradient;

 return updatedWeight;

}



MLPs in Shaders
First Attempt

• Let try this simple network  

Input

Hidden

Output



Results 

• With this first attempt, did it get close?



Results 

• With this first attempt, did it get close?

• Well, no. This leads to the key part of training a neural 
network 

Reference Prediction Error



Iteration
SlangPy to the Rescue! 

• When training a neural network for a new task, the initial results are rarely perfect. Iteration is essential and the ability 
to iterate quickly is even more important.

• Efficient GPU-based training pipelines are essential for rapid experimentation and refinement, which is why SlangPy 
was developed.

• SlangPy provides both Python and C++ interfaces to Slang, enabling fast prototyping of shading and neural rendering 
techniques.

• Once the model performs as expected, it can be deployed in C++, reusing the same Slang code for seamless 
integration into production code.

mlp = TrainableMLP(device, spy.DataType.float16,
                  num_hidden_layers=4,
            input_width=2,
                   hidden_width=64,
            output_width=3,
            hidden_act=LeakyReLUAct(),
            output_act=SigmoidAct())



Iteration
SlangPy to the Rescue! 

• So, with SlangPy we can quickly experiment with all configurations of the neural network

• Including but not limited to; networks size and depth, activation functions, input encoding and different optimizers 

Reference Prediction Error



Cooperative Vector



Cooperative Vector
API

• Cooperative vector operations allow multiple threads within a warp to jointly execute small matrix and vector 
computations on Tensor Cores, providing efficient acceleration for MLP inference and training

• They are a long vector type that extends traditional vector ranges up to 128 elements. 

• Cooperative vector functionality is vendor neutral on DirectX 12 and available on Vulkan through an NVIDIA extension.

• DirectX 12

• DirectX Agility SDK 1.717.0-preview* with Shader Model 6.9 preview 

• Vulkan 

• VK_NV_cooperative_vector

• Available from Vulkan SDK 1.4 

*Don’t ship with the preview SDK



Cooperative Vector
Shader Code

• Cooperative vector provides the key functions we need to accelerate inference and training within shaders

• Inference

• Matrix Multiply (Add): coopVecMatMul(Add)

• Input Vector * Matrix (+ Bias)

• Training

• Outer product Accumulate: coopVecOuterProductAccumulate

• Compute the outer product of two vectors and accumulate the results into memory. 

• Reduction Accumulate: coopVecReduceSumAccumulate

• Accumulate element of the input vector into memory.



Cooperative Vector 
Inference in the Graphics Pipeline 

• In shader code, MLPs are implemented directly within the regular shading stage:

 

   float3 forwardPass(uint2 uvCoordinates)

   {

 // Provide input 

 CoopVec<half, 2> inputParams = uvCoordinates;

 

 //Generate output 

 CoopVec<half, 4> hiddenParams;

 hiddenParams = coopVecMatMulAdd<half, 4>(inputParams, matrixBiasBuffer, matrixOffset[0],...)

 hiddenParams = activation(hiddenParams)

 CoopVec<half, 3> outputParams;

 outputParams = coopVecMatMulAdd<half, 3>(hiddenParams, matrixBiasBuffer, matrixOffset[1],...)

 return float3(finalActivation(outputParams).xyz);

   }

  

 

 



Cooperative Vector
Mapping to Hardware

• Hardware Tensor Cores

• Provides Matrix-Matrix multiplication using entire 
wave/warp

• Low precision (FP16, FP8, INT8)

• Cooperative Vector API

• Provide Matrix-Vector multiplication in each thread



Cooperative Vectors
Mapping to Hardware

• Cooperative Vector can combine Matrix-Vector 
multiplications from all threads in a wave / warp into a 
single matrix.

• This can be evaluated in a single Matrix Multiply 
Accumulate (MMA) across the entire wave / warp on the 
Tensor Cores

• However, the shading language allows matrix inputs to 
be different per thread. 

• If this is the case the driver will transparently 
serialize the divergent matrix operation. 

• For optimal performance, matrix inputs should be 
consistent across all threads within a wave.



Applications: Neural Texture 
Compression 



What is NTC?

• Neural Texture Compression (NTC) is a machine learning–based method for texture storage and reconstruction.

• It encodes textures into compact latent features instead of storing full-resolution texels.

• At runtime, a small neural network reconstructs texture values from the latent features on the GPU.

• NTC is deterministic, not generative. 

Crops from an NTC compressed

texture at 0.5 and 20.0 bpp



Why NTC?

• NTC achieves higher compression ratios than formats like BCn.

• It supports high channel count materials, efficiently compressing multi-channel data

• All while reducing disk footprint and download size via more compact texture storage.



Latent Textures

• Textures are encoded into latent feature maps, stored as multi-channel neural data rather than traditional texels.

• Each latent texel stores a learned feature vector, capturing material information instead of final color values.

• A neural decoder reconstructs full-resolution textures from these latent features at runtime.

• Latent textures achieve high compression ratios by reducing redundancy and learning shared texture patterns.



Learned Reconstruction
Network 

Latent

Code

Predicted Texel

Decoder MLP

UV

Positional 

Encoding



Learned Reconstruction
Training the Network

Latent

Code

Predicted Texel

Decoder MLP

UV

Loss Function

Gradients

Positional 

Encoding

Reference

Texel



Examples
Tuscan Villa Scene with BCn textures – 6.5 GB VRAM



Examples
Tuscan Villa Scene with NTC textures – 970 MB VRAM



Examples
Downscaled BCn Textures – 970 MB VRAM



Examples 
Full Resolution NTC Textures – 970 MB VRAM



Examples
Quality Comparison

NTC

BCn



Neural Texture Compression
Benefits

Practical

• Reduces disk footprint, lowering install and patch sizes

• Lowers download bandwidth requirements, enabling 
faster content delivery.

• In some use case, decreases VRAM usage by storing 
textures as compact latent data.

• Can be used now

• SDK available: github.com / NVIDIA-RTX / RTXNTC

Conceptual

• Enables higher detail materials within the same 
memory budget.

• Can be extended with perceptual loss functions for 
higher compression ratios with better visual detail

https://github.com/NVIDIA-RTX/RTXNTC
https://github.com/NVIDIA-RTX/RTXNTC
https://github.com/NVIDIA-RTX/RTXNTC


Applications: Neural Materials



Real Materials
Inspiration



Materials
We can render such complex materials BUT not in real time

Metal Teapot Handle Blue Teapot Ceramic Metal Slicer Blade Aged Metal Inkwell



Materials
These are complex materials graphs

Metal Teapot Handle Blue Teapot Ceramic Metal Slicer Blade Aged Metal Inkwell



Materials
Which we don’t know how to simplify

Metal Teapot Handle Blue Teapot Ceramic Metal Slicer Blade Aged Metal Inkwell



What are Neural Materials?

• Neural Materials represent material appearance using 
learned neural features instead of hand-authored 
parameters.

• They compress many material channels into a compact 
latent representation for efficient storage and 
streaming.

• This enable richer, more detailed materials within the 
same memory and bandwidth budget.

Neural



What Makes a Material Realistic?

• Let's look at this material in more detail

• Artists have long understood that achieving realism in 
CG materials means combining multiple material layers, 
each capturing a different light-reflection behaviour.

Neural



1 Base Ceramic

Substrate Reference



2 Gold Vapor

Substrate Reference



3 Glazing

Substrate Reference



4 Dust

Substrate Reference 19 Texture Channels



Neural Materials 
Training

• What if we used a neural network to represent a material, how would we train it?

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP



Neural Materials 
Improving Training

• We can extend this model to better represent the input texture 

646464 3 exp

Encoder MLP

BRDF

Decoder MLP

646464 864

BRDF 

Parameters

Layer 1

• Albedo

• Normal

• Tangent

• Roughness

• Layer weight

Layer N

• Albedo

• Normal

• Tangent

• Roughness

• Layer weight

..
.

Latent

Code

Latent Texture



Neural Materials 
Improving the Network: Normal Maps 

• Complete BRDF prediction is a little more involved than just a simple MLP. Let's improve the network 

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP

mult

12

Frame extraction



Neural Materials 
Auxiliary Networks: Importance Sampling

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP
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12

Frame extraction
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Neural Materials 
Auxiliary Networks: Denoiser Inputs

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP

mult

12

Frame extraction

1616 Albedo, roughness etc



Neural Material

Real-Time Path Tracing + DLSS-RR
Reference: 19 texture channels

Neural: 8 texture channels



Training Performance
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Inference Performance & Quality Comparison
RTX 5090, 2k, fully path-traced

7.03 ms7.03 ms1.97  ms1.97  ms 2.69 ms2.69 ms 5.78 ms5.78 ms

5.63 ms5.63 ms1.72  ms1.72  ms 2.21 ms2.21 ms 4.55 ms4.55 ms

64 64 64 332 32 3Neural

2x16 wide layers

Neural

2x32 wide layers

Neural

3x64 wide layers

Reference
16 16 3



Reference Quality & Performance Comparison
RTX 5090, 2k, fully path-traced

7.03 ms7.03 ms7.03  ms7.03  ms 7.03 ms7.03 ms 7.03 ms7.03 ms

5.63 ms5.63 ms5.63  ms5.63  ms 5.63 ms5.63 ms 5.63 ms5.63 ms

Reference Reference Reference Reference



Performance 
Why Neural Materials Are Faster?

Neural Materials replaces heavy BRDF math and multiple texture reads with a lightweight neural decoder.

• They avoid complex analytic BRDF evaluations

• They reduce memory traffic by collapsing several multi-channel textures with a compact multi-channel latent texture

• It computes all material layers in a single, efficient pass.



Neural Materials
Benefits

Neural Materials brings high quality complex materials to 
real time rendering. 

• Encodes complex material properties into compact 
neural representations.

• Reduces texture size and bandwidth while maintaining 
visual fidelity.

• Enables real-time rendering of high-quality materials 
learned from data.

Neural



Call to Action 



Call to Action 

• Neural shading is not difficult it is just new!

• We are in the exploration phase of the technology.

• If you would like to learn more pull the Neural Shading SDK and SIGGRAPH course. 

• Try experimenting for yourself!



Getting to know Slang
16:00 Secondary Room



Resources

• RTX Neural Shading

• https://github.com/NVIDIA-RTX/RTXNS

• Neural Shading Course SIGGRAPH 2025

• https://research.nvidia.com/labs/rtr/publication/duca202
5neural/

https://github.com/NVIDIA-RTX/RTXNS
https://github.com/NVIDIA-RTX/RTXNS
https://github.com/NVIDIA-RTX/RTXNS
https://github.com/NVIDIA-RTX/RTXNS
https://research.nvidia.com/labs/rtr/publication/duca2025neural/
https://research.nvidia.com/labs/rtr/publication/duca2025neural/
https://research.nvidia.com/labs/rtr/publication/duca2025neural/
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