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Why Neural Shading? nviDIA

- Real-time rendering is about approximating reality with the highest fidelity possible within 16 or 33 milliseconds per
frame.

- This pursuit has driven over 40 years of increasingly complex graphics pipelines and shader code.
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<3
What is Neural Shading? NVIDIA

- Neural Shading integrates machine learning into the
real-time rendering pipeline, replacing or augmenting
traditional shading functions with learned neural
networks.
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What is Neural Shading NVIDIA

o Utilises a neural network
* Anything that is
trainable

-Shading
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NVIDIA

What is Neural Shading

* Runs in the graphics
pipeline

* Part of the normal
shading code

e Utilises a neural network

* Anything that is N e U ra |

trainable
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Harnessing Neural Hardware

- Modern consumer GPUs include neural network
accelerators that remain idle during traditional L0t Cache + Warp Scheder + Dispatch (32 thresdfclik)

rendering.

Register File (16,384 x 32-bit)

- Neural Shading allows us to harness these accelerators
through Cooperative Vectors, integrating neural
computation directly into the graphics pipeline.

5TH

FP32 /INT32 GENERATION

TENSOR CORE
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Classical vs. Neural Shading

- Real-time rendering has always relied on approximate
mathematical solutions to simulate physically accurate
effects.

- Classical engineering methods depend on these
analytical models, but many shading problems are too
complex or costly to express accurately.

- Neural Shading learns these complex relationships
directly from data, bypassing the need for explicit
analytical solutions.
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Compression Materials Geometry

[Fujieda and Harada, 2024] [Kuznetsov et al., 2021] [Mildenhall et al., 2020]

[MUller et al., 2019]

P S o BT . et TR o e i :
Ours §NRC [Biased] [Muller et 2 .
37.9ms 0.36/28.5: 38.2ms 0.47/65.4 tlon

V(wz-\@)=§;)\jvj(wz‘!uja"ﬂj)
[Dereviannykh [Dong et al., 2023]
et al- y 2024] Nearest neighbor Linear
Pu(€lC) Puw(€[C)
S R I R
Pu(€l0) Pu(€l0)
[Vaidyanathan et al., 2023] Zeltner et al., 2024] [Kerbl et al., 2023] [Figueiredo et al., 2025]

raphics Programming Conference, November 18-20, Bre

<

NVIDIA




Core Concepts
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Learned Function nVIDIA
Multilayer Perceptron

- We model the learned shading functions using small Multilayer Perceptron (MLP) networks.

- An MLP is composed of many interconnected neurons, each performing a weighted sum of its inputs followed by a nonlinear
activation.

- A network is structured with an input layer, one or more hidden layers and an output layer.
- Each network is trained during prior to rendering to approximate reference shading data.

- During rendering, shaders execute MLP inference on the GPU to evaluate shading results in real time.

Inputs, X Weights, W Bias, b Output, y

Ome S O

Y = Activation(Z)
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<3
Training A
Forward Phase

- During forward phase of training, the network takes inputs and produces a predicted output. This result is compared
to the desired output to calculate an error, providing a measure of how closely the model reproduces the target
shading or visual appearance.

Calculate error against

Provide input Generate output desired output
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o <3
Training A
Backwards Phase

- The calculated error is backpropagated through the network to compute gradients, which update the network’s
parameters to better match the target shading.

Calculate error against

Provide input Generate output desired output

Adjust the parameters
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Optimizer

Backwards Phase

- Once gradients are calculated, an optimizer uses them to adjust the network’s weights and biases in order to minimize
the loss.

- The simplest form is Stochastic Gradient Descent (SGD), which updates each weight by subtracting the gradient
scaled by a learning rate.

- Adam improves on SGD by adapting the learning rate for each weight using momentum and gradient history, leading
to faster and more stable convergence.
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Inference A

Forward Phase

- During inference, the trained network takes the inputs and produces a final shading output directly, using the
parameters learned during training.

Provide input Generate output
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First Neural Shader
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TO O I s NVIDIA

6 Slcmg“" - SlangPy

- Powerful / flexible shading language - Python/C++ interface to Slang

- Write once / run anywhere - Full featured graphics api

- Compiles to SPIR-V and DXIL . Cross platform

* Generics - Functional api to directly call Slang functions from

- Supports ‘auto-diff’ (does calculus for us) Python
» Very useful for developing
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MLPs in Shaders nVIDIA

Forward Pass

- Let’s use our simplified model to train a network that generates the pixels of a texture

Calculate error against

Provide input Generate output desired output

float3 predictedColor; float3 error = predictedColor

+1loat2 uvCoordinates; _ actualColor:
J
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MLPs in Shaders nviDiA
Shader Code

- In shader code, MLPs are implemented directly within the regular shading stage:

float3 loss(uint2 uvCoordinates, float3 actualColor)

{
// Generate output
float3 predictedColor = forwardPass(uvCoordinates);
// Calculate error
float3 error = predictedColor - actualColor;
return error * error; // squared error
}
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MLPs in Shaders nVIDIA

Backwards Pass

- Now we must close the training loop by backpropagating the error through the network to generate gradients and
adjust the network parameters accordingly.

Calculate error against

Provide input Generate output desired output

Adjust the parameters
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Training MLPs in Shaders nvipIA

Differentiation

Inference Backwards
- We have our loss function: - How do we differentiate the loss function?

, | - In HLSL we will need to manually derive it.
float3 loss(uint2 uvCoordinates, float3 actualColor)

{ - But with Slang, we can let the compiler derive it!
// Generate output

float3 predictedColor = forwardPass(uvCoordinates); bwd diff(loss)( /* /)

3 o ;
// Calculate error - This saves a great deal of time and effort during the
float3 error = predictedColor - actualColor: experimentation stage of training a neural network

return error * error; // squared error
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Training MLPs in Shaders A

Gradients

- We can now derive the gradients

void calculateGradients(uint2 uvCoordinates)

{
// Generate output
float3 predictedColor = forwardPass(uvCoordinates);
// Get desired output
float3 actualColor = inputTexture[uvCoordinates].rgb;
// Calculate error
bwd diff(loss)(uvCoordinates, actualColor);

}
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Training MLPs in Shaders A

Optimizer

- With the gradients we now iterate through each of the weight and bias adjust them accordingly

float optimizerStep(float weightBias, float gradient, float learningRate)

{
float updatedWeight = weightBias - learningRate * gradient;

return updatediWeight;
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MLPs in Shaders nviDiA

First Attempt

» Let try this simple network

Hidden
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Results A

- With this first attempt, did it get close?
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Results A

- With this first attempt, did it get close?

- Well, no. This leads to the key part of training a neural
network

NVIDIA. NVIDIA

Reference Prediction Error
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Iteration e
SlangPy to the Rescuel

- When training a neural network for a new task, the initial results are rarely perfect. Iteration is essential and the ability
to iterate quickly is even more important.

- Efficient GPU-based training pipelines are essential for rapid experimentation and refinement, which is why SlangPy
was developed.

- SlangPy provides both Python and C++ interfaces to Slang, enabling fast prototyping of shading and neural rendering
techniques.

- Once the model performs as expected, it can be deployed in C++, reusing the same Slang code for seamless
integration into production code.

mlp = TrainableMLP(device, spy.DataType.floatl6,
num_hidden layers=4,
input_width=2,
hidden width=64,
output width=3,
hidden act=LeakyRelLUAct(),
output act=SigmoidAct())
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Iteration hnns
SlangPy to the Rescuel

- S0, with SlangPy we can quickly experiment with all configurations of the neural network
- Including but not limited to; networks size and depth, activation functions, input encoding and different optimizers

B’ RTX Neural Shading Example: Simple Training (Ground Truth | Training | Loss ) (Vulkan, VulkanValidationLayer, NvrhiValidationLayer) - 225 FPS

¥ Settings

1:1 Mapping

Epochs : 17398

Adam Steps : 2226945
Training Time : 77.19 s
Learning Rate : 0,000100000
Disable Training

Reset Training
Load Model
Save Model

\
NVIDIA. NVIDIA

Reference Prediction Error
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Cooperative Vector
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Cooperative Vector
API

- Cooperative vector operations allow multiple threads within a warp to jointly execute small matrix and vector
computations on Tensor Cores, providing efficient acceleration for MLP inference and training

- They are a long vector type that extends traditional vector ranges up to 128 elements.

- Cooperative vector functionality is vendor neutral on DirectX 12 and available on Vulkan through an NVIDIA extension.

» DirectX 12
» DirectX Agility SDK 1.717.0-preview* with Shader Model 6.9 preview

- Vulkan
- VK_NV_cooperative_vector
- Available from Vulkan SDK 1.4

*Don’t ship with the preview SDK
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Cooperative Vector nVIDIA
Shader Code

- Cooperative vector provides the key functions we need to accelerate inference and training within shaders

» Inference

- Matrix Multiply (Add): coopVecMatMul(Add)
» Input Vector * Matrix (+ Bias)

- Training
« Quter product Accumulate: coopVecOuterProductAccumulate
- Compute the outer product of two vectors and accumulate the results into memory.

- Reduction Accumulate: coopVecReduceSumAccumulate
- Accumulate element of the input vector into memory.
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Cooperative Vector nvIDIA

Inference in the Graphics Pipeline

- In shader code, MLPs are implemented directly within the regular shading stage:

float3 forwardPass(uint2 uvCoordinates)
{
// Provide 1input

CoopVec<half, 2> inputParams = uvCoordinates;

//Generate output
CoopVec<half, 4> hiddenParams;

hiddenParams = coopVecMatMulAdd<half, 4>(inputParams, matrixBiasBuffer, matrixOffset[0],...)

hiddenParams = activation(hiddenParams)

CoopVec<half, 3> outputParams;

outputParams = coopVecMatMulAdd<half, 3>(hiddenParams, matrixBiasBuffer, matrixOffset[1l],...)

return float3(finalActivation(outputParams).xyz);
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Cooperative Vector nVIDIA
Mapping to Hardware

- Hardware Tensor Cores
- Provides Matrix-Matrix multiplication using entire

wave/warp
- Low precision (FP16, FP8, INT8) Warp Threads > ¢ § ; 5w 5
- Cooperative Vector API B _
. . Y . : = g,
- Provide Matrix-Vector multiplication in each thread = >
S T R 3
2] 0
¥ w
Input Matrix
nput Matrix (Shared)
;V \ v
= = O
| 8 | S
| 2 | e
i '_<" T T <
, S! | 7
» >
Single Thread: Many Threads:
Matrix-Vector Multiplication Matrix-Matrix Multiplication

Maps to Tensor Cores
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Cooperative Vectors
Mapping to Hardware

- Cooperative Vector can combine Matrix-Vector
multiplications from all threads in a wave / warp into a
single matrix.

- This can be evaluated in a single Matrix Multiply
Accumulate (MMA) across the entire wave [/ warp on the
Tensor Cores

- However, the shading language allows matrix inputs to
be different per thread.

- |t this is the case the driver will transparently nput Matrix

serialize the divergent matrix operation.

Y

- For optimal performance, matrix inputs should be

|
|
consistent across all threads within a wave. i
I
|

.r

Single Thread:

10)089 A Indu|

10108/ INdINO

Matrix-Vector Multiplication
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Applications: Neural Texture
Compression
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Whatis NTC?

- Neural Texture Compression (NTC) is a machine learning-based method for texture storage and reconstruction.
- |t encodes textures into compact latent features instead of storing full-resolution texels.
- At runtime, a small neural network reconstructs texture values from the latent features on the GPU.

- NTC is deterministic, not generative.

Crops from an NTC compressed
texture at 0.5 and 20.0 bpp
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Why NTC? nwiola

- NTC achieves higher compression ratios than formats like BCn.
- |t supports high channel count materials, efficiently compressing multi-channel data

- All while reducing disk footprint and download size via more compact texture storage.
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Latent Textures NVIDIA

- Textures are encoded into latent feature maps, stored as multi-channel neural data rather than traditional texels.
- Each latent texel stores a learned feature vector, capturing material information instead of final color values.
- A neural decoder reconstructs full-resolution textures from these latent features at runtime.

- Latent textures achieve high compression ratios by reducing redundancy and learning shared texture patterns.
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Learned Reconstruction NVIDIA

Network

Latent
Code Decoder MLP

 p—
UV
E]_’ Predicted Texel

\
Positional
Encoding
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Learned Reconstruction NVIDIA
Training the Network

Latent
Code Decoder MLP

| | E]_’ Predicted Texel

Positional
Encoding

Gradients

Reference
Texel
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Examples VIDIA
Tuscan Villa Scene with BCn textures - 6.5 GB VRAM
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Examples VIDIA
Tuscan Villa Scene with NTC textures-970 MB VRAM
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Examples VDI
Downscaled BCn Textures -970 MB VRAM
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Examples VIDIA
Full Resolution NTC Textures - 970 MB VRAM
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Examples nvibia

Quality Comparison
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Neural Texture Compression nvibIA
Benefits
Practical Conceptual
- Reduces disk footprint, lowering install and patch sizes - Enables higher detail materials within the same

budget.
- Lowers download bandwidth requirements, enabling memory budge

faster content delivery. - Can be extended with perceptual loss functions for

. higher compression ratios with better visual detall
» In some use case, decreases VRAM usage by storing J P

textures as compact latent data.

- Can be used now
- SDK available: github.com / NVIDIA-RTX /[ RTANTC

Dl

0
ik
23

=]
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https://github.com/NVIDIA-RTX/RTXNTC
https://github.com/NVIDIA-RTX/RTXNTC
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Applications: Neural Materials
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Materials RIA

We can render such complex materials BUT not in real time

Blue Teapot Ceramic Metal Teapot Handle Metal Slicer Blade Aged Metal Inkwell
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Materials

These are complex materials graphs

z OrenN £
g &
5 OrenNayar @ 5 Dielectric R
@)
Dielectric D D1e1ectr1c® D g Conductor Conductor ®

Absorption (Beer)

Ceramic

(T)
Lambert

y/ 4
s

Conductoﬁ}; Conductor a
(E@ nductor a Conductor \

Conductor

Brass Oxy Verdigris

Metal Dirt Grease

Conductor

Blue Teapot Ceramic Metal Teapot Handle Metal Slicer Blade Aged Metal Inkwell
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Materials RIA

Which we don't know how to simplify

Blue Teapot Ceramic Metal Teapot Handle Metal Slicer Blade Aged Metal Inkwell
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What are Neural Materials?

- Neural Materials represent material appearance using
learned neural features instead of hand-authored

parameters.

- They compress many material channels into a compact
latent representation for efficient storage and

streaming.

- This enable richer, more detailed materials within the
same memory and bandwidth budget.
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What Makes a Material Realistic? NVIDIA

- Let's look at this material in more detalil

- Artists have long understood that achieving realism in
CG materials means combining multiple material layers,
each capturing a different light-reflection behaviouir.
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Substrate Reference

1 Base Ceramic
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Substrate Reference

2 Gold Vapor
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Substrate Reference

3 Glazing
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Substrate Reference 19 Texture Channels

4 Dust
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Neural Materials NVIDIA

Training

- What if we used a neural network to represent a material, how would we train it?

Latent
Code

/ \

Latent Texture , 1
64|64 64 exp = BRDF
V

Decoder MLP
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Neural Materials NVIDIA

Improving Training

- We can extend this model to better represent the input texture

Layer 1
« Albedo

« Normal
« Tangent Latent

. Roughness Code
« Layer weight o

7
/ \ ,
— 0464|6464 8 m—> —

Layer N _——
. Albedo Latent Texture f ‘
- Normal 64||64||64 exp = BRDF

« Tangent
« Roughness

. Layer weight Encoder MLP V
—

BRDF e
Parameters Decoder MLP
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Neural Materials

Improving the Network:

Normal Maps

- Complete BRDF prediction is a little more involved than just a simple MLP. Let's improve the network

Latent
Code

)

/ \

Frame extraction

] 2 pr——>

Latent Texture

N -

| mult I i

64

64

64

~, Graphics Programming Conference, November 18-20, Breda

Decoder MLP

3H

exp = BRDF

S

NVIDIA




S
Neural Materials NVIDIA

Auxiliary Networks: Importance Sampling

Latent
Code Frame extraction

7 —
/ \

] 2 >

L atent Texture

64||64||64 exp = BRDF

V—)L mult |

Decoder MLP

diff
32((32||32|| 9 p—> o

\ — Spec
—

~, Graphics Programming Conference, November 18-20, Breda




Neural Materials

Auxiliary Networks: Denoiser Inputs

Latent
Code

)

/ \

Frame extraction

] 2 >

L atent Texture

| mult | i

64

64

64

E;ﬂs

Decoder MLP

B

exp = BRDF

16 > Albedo, roughness etc
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Neural Material

Real-Time Path Tracing + DLSS-RR Reference: 19 texture channels
| Neural: 8 texture channels




Training Performance nviBIA

Training Performance
Optimization Data Generation Other

2x16 Quality
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Inference Performance & Quality Comparison nVIDIA
RTX 5090, 2k, fully path-traced

Neural Neural Neural Reference
2Xx 16 wide layers 2x32 wide layers

0

“

1
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Reference Quality & Performance Comparison nviDIA
RTX 5090, 2k, fully path-trace

Reference Reference Reference Reference

“

1
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Performance
Why Neural Materials Are Faster?

Neural Materials replaces heavy BRDF math and multiple texture reads with a lightweight neural decoder.

- They avoid complex analytic BRDF evaluations

- They reduce memory traffic by collapsing several multi-channel textures with a compact multi-channel latent texture

- It computes all material layers in a single, efficient pass.
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NVIDIA

Neural Materials

Benefits

Neural Materials brings high quality complex materials to
real time rendering.

- Encodes complex material properties into compact
neural representations.

- Reduces texture size and bandwidth while maintaining
visual fidelity.

- Enables real-time rendering of high-quality materials
learned from data.
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Call to Action
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Call to Action NVIDIA

- Neural shading is not difficult it is just new!
- We are in the exploration phase of the technology.
- If you would like to learn more pull the Neural Shading SDK and SIGGRAPH course.

» Try experimenting for yourself!
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Getting to know Slang NVIDIA
16:00 Secondary Room
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Resources b
- RTX Neural Shading - Neural Shading Course SIGGRAPH 2025
 https://qgithub.com/NVIDIA-RTX/RTXNS » https://research.nvidia.com/labs/rtr/publication/duca202
5neural/

ap
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