
Neural Shading for Real-Time
Graphics
Andrew Allan, Devtech Engineer | Graphics Programming Conference

Introduction

Why Neural Shading?

• Real-time rendering is about approximating reality with the highest fidelity possible within 16 or 33 milliseconds per
frame.

• This pursuit has driven over 40 years of increasingly complex graphics pipelines and shader code.

[Cook, 1984] 2000 2007 2019

Insert images here

What is Neural Shading?

• Neural Shading integrates machine learning into the
real-time rendering pipeline, replacing or augmenting
traditional shading functions with learned neural
networks.

Neural

What is Neural Shading

Neural Shading
• Utilises a neural network

• Anything that is

trainable

What is Neural Shading

Neural Shading
• Utilises a neural network

• Anything that is

trainable

• Runs in the graphics

pipeline

• Part of the normal

shading code

Harnessing Neural Hardware

• Modern consumer GPUs include neural network
accelerators that remain idle during traditional
rendering.

• Neural Shading allows us to harness these accelerators
through Cooperative Vectors, integrating neural
computation directly into the graphics pipeline.

Classical vs. Neural Shading

• Real-time rendering has always relied on approximate
mathematical solutions to simulate physically accurate
effects.

• Classical engineering methods depend on these
analytical models, but many shading problems are too
complex or costly to express accurately.

• Neural Shading learns these complex relationships
directly from data, bypassing the need for explicit
analytical solutions.

Neural

Research

[Fujieda and Harada, 2024]

[Vaidyanathan et al., 2023]

[Belcour and Benyoub, 2025]

[Kuznetsov et al., 2021]

[Mullia et al., 2024]

[Zeltner et al., 2024]

[Mildenhall et al., 2020]

[Kerbl et al., 2023]

[Müller et al., 2022] [Dereviannykh

et al., 2024]

[Müller et al., 2021] [Müller et al., 2019]

[Figueiredo et al., 2025]

[Dong et al., 2023]

Compression Materials Geometry Caching Guiding

Core Concepts

Learned Function
Multilayer Perceptron

• We model the learned shading functions using small Multilayer Perceptron (MLP) networks.

• An MLP is composed of many interconnected neurons, each performing a weighted sum of its inputs followed by a nonlinear
activation.

• A network is structured with an input layer, one or more hidden layers and an output layer.

• Each network is trained during prior to rendering to approximate reference shading data.

• During rendering, shaders execute MLP inference on the GPU to evaluate shading results in real time.

Training
Forward Phase

• During forward phase of training, the network takes inputs and produces a predicted output. This result is compared
to the desired output to calculate an error, providing a measure of how closely the model reproduces the target
shading or visual appearance.

Provide input Generate output
Calculate error against

desired output

Training
Backwards Phase

• The calculated error is backpropagated through the network to compute gradients, which update the network’s
parameters to better match the target shading.

Provide input Generate output
Calculate error against

desired output

Adjust the parameters

Optimizer
Backwards Phase

• Once gradients are calculated, an optimizer uses them to adjust the network’s weights and biases in order to minimize
the loss.

• The simplest form is Stochastic Gradient Descent (SGD), which updates each weight by subtracting the gradient
scaled by a learning rate.

• Adam improves on SGD by adapting the learning rate for each weight using momentum and gradient history, leading
to faster and more stable convergence.

Inference
Forward Phase

• During inference, the trained network takes the inputs and produces a final shading output directly, using the
parameters learned during training.

Provide input Generate output

First Neural Shader

• Python/C++ interface to Slang

• Full featured graphics api

• Cross platform

• Functional api to directly call Slang functions from
Python

Tools

• Powerful / flexible shading language

• Write once / run anywhere

• Compiles to SPIR-V and DXIL

• Generics

• Supports ‘auto-diff’ (does calculus for us)

• Very useful for developing

MLPs in Shaders
Forward Pass

• Let’s use our simplified model to train a network that generates the pixels of a texture

Provide input Generate output
Calculate error against

desired output

float2 uvCoordinates; float3 predictedColor; float3 error = predictedColor
- actualColor;

MLPs in Shaders
Shader Code

• In shader code, MLPs are implemented directly within the regular shading stage:

float3 loss(uint2 uvCoordinates, float3 actualColor)

{

 // Generate output

 float3 predictedColor = forwardPass(uvCoordinates);

 // Calculate error

 float3 error = predictedColor - actualColor;

 return error * error; // squared error

}

MLPs in Shaders
Backwards Pass

• Now we must close the training loop by backpropagating the error through the network to generate gradients and
adjust the network parameters accordingly.

Provide input Generate output
Calculate error against

desired output

Adjust the parameters

Training MLPs in Shaders
Differentiation

Inference

• We have our loss function:

float3 loss(uint2 uvCoordinates, float3 actualColor)

{

 // Generate output

 float3 predictedColor = forwardPass(uvCoordinates);

 // Calculate error

 float3 error = predictedColor - actualColor;

 return error * error; // squared error

}

Backwards

• How do we differentiate the loss function?

• In HLSL we will need to manually derive it.

• But with Slang, we can let the compiler derive it!

bwd_diff(loss)(/* ... */);

• This saves a great deal of time and effort during the
experimentation stage of training a neural network

Training MLPs in Shaders
Gradients

• We can now derive the gradients

void calculateGradients(uint2 uvCoordinates)

{

 // Generate output

 float3 predictedColor = forwardPass(uvCoordinates);

 // Get desired output

 float3 actualColor = inputTexture[uvCoordinates].rgb;

 // Calculate error

 bwd_diff(loss)(uvCoordinates, actualColor);

}

Training MLPs in Shaders
Optimizer

• With the gradients we now iterate through each of the weight and bias adjust them accordingly

float optimizerStep(float weightBias, float gradient, float learningRate)

{

 float updatedWeight = weightBias – learningRate * gradient;

 return updatedWeight;

}

MLPs in Shaders
First Attempt

• Let try this simple network

Input

Hidden

Output

Results

• With this first attempt, did it get close?

Results

• With this first attempt, did it get close?

• Well, no. This leads to the key part of training a neural
network

Reference Prediction Error

Iteration
SlangPy to the Rescue!

• When training a neural network for a new task, the initial results are rarely perfect. Iteration is essential and the ability
to iterate quickly is even more important.

• Efficient GPU-based training pipelines are essential for rapid experimentation and refinement, which is why SlangPy
was developed.

• SlangPy provides both Python and C++ interfaces to Slang, enabling fast prototyping of shading and neural rendering
techniques.

• Once the model performs as expected, it can be deployed in C++, reusing the same Slang code for seamless
integration into production code.

mlp = TrainableMLP(device, spy.DataType.float16,
 num_hidden_layers=4,
 input_width=2,
 hidden_width=64,
 output_width=3,
 hidden_act=LeakyReLUAct(),
 output_act=SigmoidAct())

Iteration
SlangPy to the Rescue!

• So, with SlangPy we can quickly experiment with all configurations of the neural network

• Including but not limited to; networks size and depth, activation functions, input encoding and different optimizers

Reference Prediction Error

Cooperative Vector

Cooperative Vector
API

• Cooperative vector operations allow multiple threads within a warp to jointly execute small matrix and vector
computations on Tensor Cores, providing efficient acceleration for MLP inference and training

• They are a long vector type that extends traditional vector ranges up to 128 elements.

• Cooperative vector functionality is vendor neutral on DirectX 12 and available on Vulkan through an NVIDIA extension.

• DirectX 12

• DirectX Agility SDK 1.717.0-preview* with Shader Model 6.9 preview

• Vulkan

• VK_NV_cooperative_vector

• Available from Vulkan SDK 1.4

*Don’t ship with the preview SDK

Cooperative Vector
Shader Code

• Cooperative vector provides the key functions we need to accelerate inference and training within shaders

• Inference

• Matrix Multiply (Add): coopVecMatMul(Add)

• Input Vector * Matrix (+ Bias)

• Training

• Outer product Accumulate: coopVecOuterProductAccumulate

• Compute the outer product of two vectors and accumulate the results into memory.

• Reduction Accumulate: coopVecReduceSumAccumulate

• Accumulate element of the input vector into memory.

Cooperative Vector
Inference in the Graphics Pipeline

• In shader code, MLPs are implemented directly within the regular shading stage:

 float3 forwardPass(uint2 uvCoordinates)

 {

 // Provide input

 CoopVec<half, 2> inputParams = uvCoordinates;

 //Generate output

 CoopVec<half, 4> hiddenParams;

 hiddenParams = coopVecMatMulAdd<half, 4>(inputParams, matrixBiasBuffer, matrixOffset[0],...)

 hiddenParams = activation(hiddenParams)

 CoopVec<half, 3> outputParams;

 outputParams = coopVecMatMulAdd<half, 3>(hiddenParams, matrixBiasBuffer, matrixOffset[1],...)

 return float3(finalActivation(outputParams).xyz);

 }

Cooperative Vector
Mapping to Hardware

• Hardware Tensor Cores

• Provides Matrix-Matrix multiplication using entire
wave/warp

• Low precision (FP16, FP8, INT8)

• Cooperative Vector API

• Provide Matrix-Vector multiplication in each thread

Cooperative Vectors
Mapping to Hardware

• Cooperative Vector can combine Matrix-Vector
multiplications from all threads in a wave / warp into a
single matrix.

• This can be evaluated in a single Matrix Multiply
Accumulate (MMA) across the entire wave / warp on the
Tensor Cores

• However, the shading language allows matrix inputs to
be different per thread.

• If this is the case the driver will transparently
serialize the divergent matrix operation.

• For optimal performance, matrix inputs should be
consistent across all threads within a wave.

Applications: Neural Texture
Compression

What is NTC?

• Neural Texture Compression (NTC) is a machine learning–based method for texture storage and reconstruction.

• It encodes textures into compact latent features instead of storing full-resolution texels.

• At runtime, a small neural network reconstructs texture values from the latent features on the GPU.

• NTC is deterministic, not generative.

Crops from an NTC compressed

texture at 0.5 and 20.0 bpp

Why NTC?

• NTC achieves higher compression ratios than formats like BCn.

• It supports high channel count materials, efficiently compressing multi-channel data

• All while reducing disk footprint and download size via more compact texture storage.

Latent Textures

• Textures are encoded into latent feature maps, stored as multi-channel neural data rather than traditional texels.

• Each latent texel stores a learned feature vector, capturing material information instead of final color values.

• A neural decoder reconstructs full-resolution textures from these latent features at runtime.

• Latent textures achieve high compression ratios by reducing redundancy and learning shared texture patterns.

Learned Reconstruction
Network

Latent

Code

Predicted Texel

Decoder MLP

UV

Positional

Encoding

Learned Reconstruction
Training the Network

Latent

Code

Predicted Texel

Decoder MLP

UV

Loss Function

Gradients

Positional

Encoding

Reference

Texel

Examples
Tuscan Villa Scene with BCn textures – 6.5 GB VRAM

Examples
Tuscan Villa Scene with NTC textures – 970 MB VRAM

Examples
Downscaled BCn Textures – 970 MB VRAM

Examples
Full Resolution NTC Textures – 970 MB VRAM

Examples
Quality Comparison

NTC

BCn

Neural Texture Compression
Benefits

Practical

• Reduces disk footprint, lowering install and patch sizes

• Lowers download bandwidth requirements, enabling
faster content delivery.

• In some use case, decreases VRAM usage by storing
textures as compact latent data.

• Can be used now

• SDK available: github.com / NVIDIA-RTX / RTXNTC

Conceptual

• Enables higher detail materials within the same
memory budget.

• Can be extended with perceptual loss functions for
higher compression ratios with better visual detail

https://github.com/NVIDIA-RTX/RTXNTC
https://github.com/NVIDIA-RTX/RTXNTC
https://github.com/NVIDIA-RTX/RTXNTC

Applications: Neural Materials

Real Materials
Inspiration

Materials
We can render such complex materials BUT not in real time

Metal Teapot Handle Blue Teapot Ceramic Metal Slicer Blade Aged Metal Inkwell

Materials
These are complex materials graphs

Metal Teapot Handle Blue Teapot Ceramic Metal Slicer Blade Aged Metal Inkwell

Materials
Which we don’t know how to simplify

Metal Teapot Handle Blue Teapot Ceramic Metal Slicer Blade Aged Metal Inkwell

What are Neural Materials?

• Neural Materials represent material appearance using
learned neural features instead of hand-authored
parameters.

• They compress many material channels into a compact
latent representation for efficient storage and
streaming.

• This enable richer, more detailed materials within the
same memory and bandwidth budget.

Neural

What Makes a Material Realistic?

• Let's look at this material in more detail

• Artists have long understood that achieving realism in
CG materials means combining multiple material layers,
each capturing a different light-reflection behaviour.

Neural

1 Base Ceramic

Substrate Reference

2 Gold Vapor

Substrate Reference

3 Glazing

Substrate Reference

4 Dust

Substrate Reference 19 Texture Channels

Neural Materials
Training

• What if we used a neural network to represent a material, how would we train it?

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP

Neural Materials
Improving Training

• We can extend this model to better represent the input texture

646464 3 exp

Encoder MLP

BRDF

Decoder MLP

646464 864

BRDF

Parameters

Layer 1

• Albedo

• Normal

• Tangent

• Roughness

• Layer weight

Layer N

• Albedo

• Normal

• Tangent

• Roughness

• Layer weight

..
.

Latent

Code

Latent Texture

Neural Materials
Improving the Network: Normal Maps

• Complete BRDF prediction is a little more involved than just a simple MLP. Let's improve the network

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP

mult

12

Frame extraction

Neural Materials
Auxiliary Networks: Importance Sampling

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP

mult

12

Frame extraction

323232 9

PDF

diff

&

spec

Neural Materials
Auxiliary Networks: Denoiser Inputs

646464 3 exp

Latent

Code

Latent Texture

BRDF

Decoder MLP

mult

12

Frame extraction

1616 Albedo, roughness etc

Neural Material

Real-Time Path Tracing + DLSS-RR
Reference: 19 texture channels

Neural: 8 texture channels

Training Performance

112

44

21

2x16 Quality

T
im

e
 (

s
)

Training Performance

Optimization Data Generation Other

Inference Performance & Quality Comparison
RTX 5090, 2k, fully path-traced

7.03 ms7.03 ms1.97 ms1.97 ms 2.69 ms2.69 ms 5.78 ms5.78 ms

5.63 ms5.63 ms1.72 ms1.72 ms 2.21 ms2.21 ms 4.55 ms4.55 ms

64 64 64 332 32 3Neural

2x16 wide layers

Neural

2x32 wide layers

Neural

3x64 wide layers

Reference
16 16 3

Reference Quality & Performance Comparison
RTX 5090, 2k, fully path-traced

7.03 ms7.03 ms7.03 ms7.03 ms 7.03 ms7.03 ms 7.03 ms7.03 ms

5.63 ms5.63 ms5.63 ms5.63 ms 5.63 ms5.63 ms 5.63 ms5.63 ms

Reference Reference Reference Reference

Performance
Why Neural Materials Are Faster?

Neural Materials replaces heavy BRDF math and multiple texture reads with a lightweight neural decoder.

• They avoid complex analytic BRDF evaluations

• They reduce memory traffic by collapsing several multi-channel textures with a compact multi-channel latent texture

• It computes all material layers in a single, efficient pass.

Neural Materials
Benefits

Neural Materials brings high quality complex materials to
real time rendering.

• Encodes complex material properties into compact
neural representations.

• Reduces texture size and bandwidth while maintaining
visual fidelity.

• Enables real-time rendering of high-quality materials
learned from data.

Neural

Call to Action

Call to Action

• Neural shading is not difficult it is just new!

• We are in the exploration phase of the technology.

• If you would like to learn more pull the Neural Shading SDK and SIGGRAPH course.

• Try experimenting for yourself!

Getting to know Slang
16:00 Secondary Room

Resources

• RTX Neural Shading

• https://github.com/NVIDIA-RTX/RTXNS

• Neural Shading Course SIGGRAPH 2025

• https://research.nvidia.com/labs/rtr/publication/duca202
5neural/

https://github.com/NVIDIA-RTX/RTXNS
https://github.com/NVIDIA-RTX/RTXNS
https://github.com/NVIDIA-RTX/RTXNS
https://github.com/NVIDIA-RTX/RTXNS
https://research.nvidia.com/labs/rtr/publication/duca2025neural/
https://research.nvidia.com/labs/rtr/publication/duca2025neural/
https://research.nvidia.com/labs/rtr/publication/duca2025neural/

	Folie 1: Neural Shading for Real-Time Graphics
	Folie 2
	Folie 3: Why Neural Shading?
	Folie 4
	Folie 5: Insert images here
	Folie 6: What is Neural Shading?
	Folie 7: What is Neural Shading
	Folie 8: What is Neural Shading
	Folie 9: Harnessing Neural Hardware
	Folie 10: Classical vs. Neural Shading
	Folie 11: Research
	Folie 12
	Folie 13: Learned Function
	Folie 14: Training
	Folie 15: Training
	Folie 16: Optimizer
	Folie 17: Inference
	Folie 18
	Folie 19: Tools
	Folie 20: MLPs in Shaders
	Folie 21: MLPs in Shaders
	Folie 22: MLPs in Shaders
	Folie 23: Training MLPs in Shaders
	Folie 24: Training MLPs in Shaders
	Folie 25: Training MLPs in Shaders
	Folie 26: MLPs in Shaders
	Folie 27: Results
	Folie 28: Results
	Folie 29: Iteration
	Folie 30: Iteration
	Folie 31
	Folie 32: Cooperative Vector
	Folie 33: Cooperative Vector
	Folie 34: Cooperative Vector
	Folie 35: Cooperative Vector
	Folie 36: Cooperative Vectors
	Folie 37
	Folie 38: What is NTC?
	Folie 39: Why NTC?
	Folie 40: Latent Textures
	Folie 41: Learned Reconstruction
	Folie 42: Learned Reconstruction
	Folie 43: Examples
	Folie 44: Examples
	Folie 45: Examples
	Folie 46: Examples
	Folie 47: Examples
	Folie 48: Neural Texture Compression
	Folie 49
	Folie 50: Real Materials
	Folie 51: Materials
	Folie 52: Materials
	Folie 53: Materials
	Folie 54: What are Neural Materials?
	Folie 55: What Makes a Material Realistic?
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60: Neural Materials
	Folie 61: Neural Materials
	Folie 62: Neural Materials
	Folie 63: Neural Materials
	Folie 64: Neural Materials
	Folie 65
	Folie 66: Training Performance
	Folie 67: Inference Performance & Quality Comparison
	Folie 68: Reference Quality & Performance Comparison
	Folie 69: Performance
	Folie 70: Neural Materials
	Folie 71
	Folie 72: Call to Action
	Folie 73: Getting to know Slang
	Folie 74: Resources

