

Graphics Programming Conference, November 18-20, Breda

2025

Seed-based Character Generation in UE5

Mario Caprino - GOALS

GOALS

- New free to play soccer game
- Focus on responsive and fair gameplay
- E-sports ready
- To be released 2026

Generated characters

- No licensed players or clubs
- All characters are generated on demand at runtime from seed
- Character visuals must remain deterministic

EDIT TEAM

SQUAD

COLLECTION

INTERNAL BUILD: 0.60.0.0 / 72398+72211 (*be8714) [Test] E WIN

mario+test1

3,264

0

FILTER

ACTIVE PLAYERS

MAJEWSKI

86 OVR

93 PAC

89 SHO

83 PAS

74 DRI

37 DEF

82 PHY

176 CM

79 KG

11 PF

HAGBERG

94 PAC 87 DRI
82 SHO 91 DEF
87 PAS 93 PHY

RENSEN

93 PAC 93 DRI
90 SHO 87 DEF
91 PAS 83 PHY

GOLOB

87 PAC 88 DRI
89 SHO 61 DEF
90 PAS 87 PHY

VAN ANDEL

86 PAC 91 DRI
82 SHO 61 DEF
94 PAS 80 PHY

WALLIN

94 PAC 89 DRI
86 SHO 64 DEF
92 PAS 71 PHY

FELIZ

90 PAC 72 DRI
39 SHO 88 DEF
90 PAS 81 PHY

MAJEWSKI

93 PAC 74 DRI
89 SHO 37 DEF
83 PAS 82 PHY

TUMBAS

88 PAC 81 DRI
83 SHO 59 DEF
93 PAS 63 PHY

BILLY

92 PAC 70 DRI
41 SHO 85 DEF
86 PAS 70 PHY

NEWTON

84 PAC 72 DRI
79 SHO 71 DEF
69 PAS 85 PHY

OSHIRO

81 PAC 85 DRI
70 SHO 51 DEF
85 PAS 69 PHY

SANCHEZ

82 PAC 60 DRI
32 SHO 89 DEF
28 PAS 73 PHY

Graphics Programming Conference, November 18-20, Breda

2025

Unreal's Mutable plugin

- Seed based character generation is a main feature of GOALS
- Mutable is a beta feature
- Makes us dependent on an external providers road map
- Better flexibility with our own solution

Toolchain overview

- 1) Populate string map from character seed
- 2) Convert strings to visual data using blueprints
- 3) Combine visual data to Unreal skeletal mesh

Dividing character generation into multiple steps allow us to provide artist tools for each level

▼ Preview Options

Randomize

Preview Tier

Seed

Is Female

Gen Version

Bypass Face Joint Scaling

Nationality

Preview Kit

Basic

1731776128

1

▼ Debug Options

OpenCaptureRenderTarget

OpenPostProcessRenderTargets

EUW Play... Editor x

Gear Item Preset DA_Jersey_England01_Longsleeve

Preview General

Preview LOD 0

Preview Player Marking

Player Name LONG_NAME

Player Number 86

Player Name Font SF_Inter24ptSemiBold

Player Number Font SF_GoalsEnglish

General Material Decals

Decals

Decal Socket Set DA_Decals_Jersey_02

Player Number 0 Default

Sponsor 0 Decal Params

Team Crest Active

Player Name Decal Type

Single Channel Sdf

T_World_S21_SDF

Decal Style

Color 0

Color 1

Color 2

Color 3

Roughness 0.3064

Metallic 0.0

Normal Opacity 1.0

Bump Height 0.1

Bump Width 0.1

Shadow Opacity 0.5

Shadow Width 0.5

Scale 1.0

Offset 0.0

Rotation 0.0

Bend Amount 0.0

Flip Symmetry

Nationalities

- 186 countries
- France: Mediterranean 85%, Arab 10%, Bantoid 3%
- England: Germanic 81%, Asian 9%, Bantoid 4%, Mulatto 3%
- Spain: Mediterranean 94%, Bantoid 3%, Arab 2%, Slavic 1%
- Germany: Germanic 92%, Turkic 4%, Slavic 2%, Bantoid 2%

Ethnicity groups

- 15 ethnicity groups
- Amerindian, Arab, Baltic, Bantoid, Brazilian, EastAsian, Germanic, Indian, Iranian, Mediterranean, Nordic, Sahelian, Slavic, Turkic, Uralic
- Ethnicity groups describe common visual features
- Base head, Eye color, Hair color, Skin color, Hair style, Facial hair, Eyebrows, Eyelashes, Nose profile

Base Head

Add new item	
caucasian_male_01	x
- L:33% B:33% S:33% (wt:1.0)	+
Everyone	v
caucasian_male_03	x
- L:33% B:33% S:33% (wt:1.0)	+
Everyone	v
caucasian_male_02	x
- L:33% B:33% S:33% (wt:1.0)	+
Everyone	v
caucasian_male_05	x
- L:0% B:0% S:0% (wt:0.0)	+
Everyone	v

Add new item	
caucasian_female_01	x
- L:33% B:33% S:33% (wt:1.0)	+
Everyone	v
caucasian_female_03	x
- L:33% B:33% S:33% (wt:1.0)	+
Everyone	v
caucasian_female_04	x
- L:33% B:33% S:33% (wt:1.0)	+
Everyone	v

Eye Color

eye_color_light_blue	x
- L:17% B:17% S:17% (wt:3.0)	+
Everyone	v
eye_color_blue	x
- L:33% B:33% S:33% (wt:6.0)	+
Everyone	v
eye_color_brown	x
- L:11% B:11% S:11% (wt:2.0)	+
Everyone	v
eye_color_green	x
- L:17% B:17% S:17% (wt:3.0)	+
Everyone	v
eye_color_hazel	x
- L:17% B:17% S:17% (wt:3.0)	+
Everyone	v
eye_color_black	x
- L:6% B:6% S:6% (wt:1.0)	+
Everyone	v

Hair Color

hair_color_black	x
- L:19% B:19% S:19% (wt:20.0)	+
Everyone	v
hair_color_brown_dark	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_darkash	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_darkintense	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_darkgolden	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumash	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumintense	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumlight	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumgolden	x
- L:11% B:11% S:11% (wt:12.0)	+
Everyone	v
hair_color_brown_mediumgolden	x
- L:11% B:11% S:11% (wt:12.0)	+
Everyone	v
hair_color_brown_mediumlight	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumcopper	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumcopper	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_lightcopper	x
- L:4% B:4% S:4% (wt:4.0)	+
Everyone	v
hair_color_brown_mediumash	x
- L:7% B:7% S:7% (wt:8.0)	+
Everyone	v
hair_color_brown_mediumash	x
- L:7% B:7% S:7% (wt:8.0)	+
Everyone	v

Skin Color

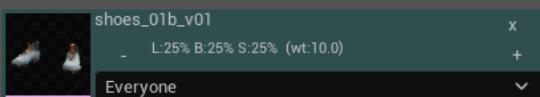
skin_color_pale	x
- L:7% B:7% S:7% (wt:5.0)	+
Everyone	v
skin_color_mild_tan	x
- L:4% B:4% S:4% (wt:3.0)	+
Everyone	v
sc_ca_01	x
- L:15% B:15% S:15% (wt:10.0)	+
Everyone	v
sc_ca_02	x
- L:15% B:15% S:15% (wt:10.0)	+
Everyone	v
sc_ca_03	x
- L:15% B:15% S:15% (wt:10.0)	+
Everyone	v
sc_ca_04	x
- L:15% B:15% S:15% (wt:10.0)	+
Everyone	v
sc_ca_05	x
- L:15% B:15% S:15% (wt:10.0)	+
Everyone	v
sc_ca_06	x
- L:15% B:15% S:15% (wt:10.0)	+
Everyone	v

Hair Style

Short Wavy Quiff 01_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Straight tQuiff 02_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Straight Mohawk 01_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Medium Wavy Wolfcut 03_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Medium Wavy Wolfcut 01_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Undercut 02_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Undercut 03_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Wavy Drop Cut 01_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Wavy Drop Cut 01_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Straight tQuiff 02_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Straight Mohawk 01_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Medium Straight Ponytail 01_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Medium Straight Ponytail 01_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Medium Braid Ponytail 01_v01	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Medium Braid Ponytail 01_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Undercut 01_v01	x
- L:1% B:1% S:1% (wt:1.0)	+
Everyone	v
Undercut 02_v01	x
- L:1% B:1% S:1% (wt:1.0)	+
Everyone	v
Short Wavy Quiff 01_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v
Short Wavy Drop Cut 01_v01m	x
- L:7% B:7% S:7% (wt:10.0)	+
Everyone	v

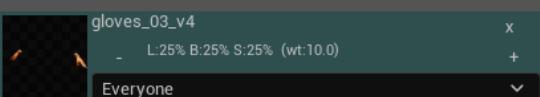
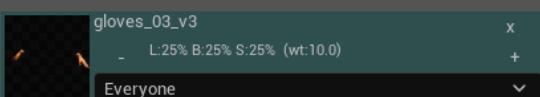
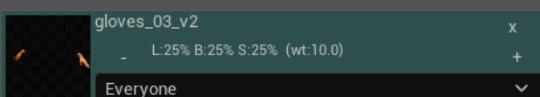
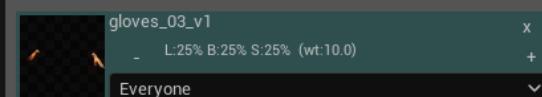
Default_01_GK

x

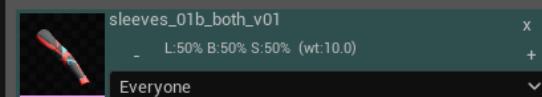


Raw Data

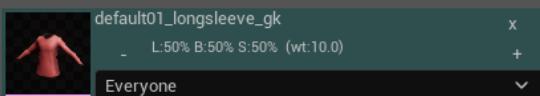
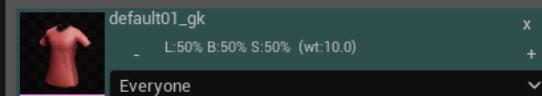
Goals Eth...y Editor x





Boots

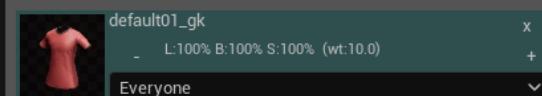
x Add new item


Gloves

x Add new item



Sleeves

x Add new item


Jersey

x Add new item

Shorts

x Add new item

Socks

Weighted arrays

- Weighted array entries preserve real world distributions
- Randomly select an entry using the weighted sum
- Used for selecting ethnicity, as well as each visual feature

Weighted arrays snapshot

- Snapshot contains weighted array entries optimized for runtime
- Artist friendly tables are expanded into multiple weighted arrays
- Entries store the weighted sum of previous entries including self
- Last entry will therefore contain the weighted sum for all entries
- Select random value from 0 to weighted sum of all
- Use either linear or binary search to find entry represented by value

Weighted arrays code sample

```
static FName GetRandomWeightedName(const FWeightedArray& Array, const FRandomStream& Stream)
{
    const float SumWeight = Array[Array.Num() - 1].SumWeight;      // last element contains weighted sum of array
    const float RandomWeight = Stream.FRandRange(0.0f, SumWeight); // pick random value in range 0..SumWeight
    int i = LinearSearchWeightedArray(Array, RandomWeight);        // find element for RandomWeight
    return Array[i].Name;
}

static int LinearSearchWeightedArray(const FWeightedArray& Array, float RandomWeight)
{
    for (int i = 0; i < Array.Num(); i++)
    {
        if (RandomWeight <= Array[i].SumWeight) // return first element that includes RandomWeight
            return i;
    }
    return Array.Num() - 1;
}
```

Deterministic randomness

- Must use random number generator deterministically
- Always call random for visual features in same order
- Must allow artists to add visual features over time
- Would like to have characters evolve as their rating increase

Snapshot and versioning

- For each character content release we perform a snapshot
- Snapshots contain the order visual features are calculated
- On character creation server stores seed along with latest snapshot version

Snapshot contains the following tables

- Nationality to ethnicity mapping
- Ethnicity/gender group to visual string mapping

Evolving characters

- 1) Populate all features as normal
 - a) *Hidden features (tattoos/ear-rings)*
 - 1) Shuffle order of hidden features from character seed
 - 2) Remove features that remain hidden for evolution tier
 - b) *Evolving features (hair style)*
 - 2) Artists describe evolution chains for values
 - 3) Use feature value as base value
 - 4) Redetermine feature value for each evolution tier

Blueprints

- Blueprints hide how strings are translated to visual data
- Provides a common interface for all visual features
- Makes it easy to support new visual features with existing tools
- 16 feature handlers
- Used for body parts and clothing

Engine Subsystem

- Character generation is implemented as an engine subsystem
- We use Unreal's FTask for multithreading
- Subsystem caches tasks of recently generated characters
- Hash of input string map is used for cache key
- Avoids generating the same character multiple times
- Allows result of task to easily be used with multiple task chains

Runtime asset composition

- Copy mesh data
- Morph mesh pieces for gender/build
- Additive adjustments to facial features
- Clip body mesh hidden by clothing
- Add render sections for decals
- Merge mesh pieces

Morph mesh pieces

- Interpolate vertex data from base mesh to morph target
- Used to support gender and bulkiness
- All bodies are based of the same base skeletal mesh
- We use character's BMI to determine interpolation value
- Tooling allows artists to easily provide additional morphs for clothing

Facial features

- Base head is selected from ethnicity
- We use additive adjustments to make faces unique
- Adjustments are achieved by modifying facial bones
- Artists provide relative min/max transformations per facial feature
- Each base head can have custom min/max limits
- We interpolate transformations using random value per feature
- We apply the resulting transformation using CPU skinning

Quick side note

- Originally string map population occurred on server
- Avoided snapshots as cloud stored each character string map
- Changes to character generation had to involve cloud team
- This included art content updates, slowing iteration time
- Facial features was the breaking straw that convinced us to move client side

Decals

- Artists are free to add decals to clothing
- Artists specify placement of decal in UV space
- Any triangle that intersects with decal placement will be added to new render section
- Split existing index buffer by moving intersecting triangles to end

Decals code sample

```
uint32 BaseIndex = RenderSection.BaseIndex;
uint32 EndIndex = BaseIndex + RenderSection.NumTriangles * 3;
while (BaseIndex < EndIndex)
{
    bool ContainsAny = false;
    for (int i = 0; i < 3 && !ContainsAny; i++)
    {
        const uint32 VertexIndex = LODRenderData.IndexBuffer[BaseIndex + i];
        FVector2f UV = LODRenderData.GetUV(VertexIndex, UVIndex);
        FVector2f TransformedUV = UVTransform.TransformPoint(UV);
        ContainsAny = UnitBox.IsInsideOrOn(TransformedUV);
    }
    if (ContainsAny)
    {
        EndIndex -= 3;
        for (int i = 0; i < 3; i++)
        {
            std::swap(LODRenderData.IndexBuffer[BaseIndex + i], LODRenderData.IndexBuffer[EndIndex + i]);
        }
    }
    else
    {
        BaseIndex += 3;
    }
}
```

Clipping

- Remove triangles contained within clipping mesh
- Test if ray from vertex hits clipping mesh an odd or even amount
- Use an acceleration grid to reduce ray intersection tests
- Assume triangles are evenly distributed within the clipping mesh bounding box
- Project along the shortest axis of bounding box
- Find optimal cell size that gives us desired triangle count per cell
- Store clipping mesh triangles per grid cell

Clipping code sample

```
ClippingMeshAccelerationGrid AccelerationGrid = GenerateClippingMeshAccelerationGrid(ClippingMesh);

FVector3f Direction = FVector3f::ZeroVector;
Direction[AccelerationGrid.ProjectAxis] = 1.0f;
UE::Geometry::FIntrRay3Triangle3f Intersector(FRay3f(FVector3f::ZeroVector, Direction), UE::Geometry::FTriangle3f());
for (int i = 0; i < LODRenderData.PositionVertexBuffer.Num(); i++)
{
    // Ignore vertices outside AABB
    const FVector3f& Point = LODRenderData.PositionVertexBuffer[i];
    if (!FMath::PointBoxIntersection(Point, AccelerationGrid.AABBBox))
    {
        continue;
    }

    Intersector.Ray.Origin = Point;
    const FIntPoint IntersectingCell = AccelerationGrid.GetCellPoint(Point);
    if (IsInClippingMesh(Intersector, ClippingGeometry, AccelerationGrid.GetCell(IntersectingCell)))
    {
        OverlappingVertices[i] = true;
    }
}
```

Merge mesh pieces

- Based of Unreal's SkeletalMeshMerge
- Combines render sections referencing the same material

Your done!

- That's an overview of our character generation pipeline
- We have just generated a character from a seed to be used in UE5

Thanks to my colleagues

- Torbjörn Söderman
- David Serrat Jiménez
- Andrei Kushner
- Nikolaos Kaltsogiannis
- Marco Musto
- Albin Lundahl
- Daniel Noll

Bonus slides

Texture baking

- Optimization for low detail characters
- Merge render sections with generated texture atlas
- Texture atlas is BC7 encoded using compute shader
- Compute shader writes encoded block to R32G32B32A32_UINT
- FComputeShaderUtils::AddCopyTexturePass does not allow copying between different pixel formats