

Seed-based Character
Generation in UE5

Mario Caprino - GOALS

GOALS

• New free to play soccer game

• Focus on responsive and fair gameplay

• E-sports ready

• To be released 2026

Generated characters

• No licensed players or clubs

• All characters are generated on demand at runtime from seed

• Character visuals must remain deterministic

Generated characters

Screenshot

Unreal’s Mutable plugin

• Seed based character generation is a main feature of GOALS

• Mutable is a beta feature

• Makes us dependent on an external providers road map

• Better flexibility with our own solution

Toolchain overview

1) Populate string map from character seed

2) Convert strings to visual data using blueprints

3) Combine visual data to Unreal skeletal mesh

Dividing character generation into multiple steps allow us to provide
artist tools for each level

Seed input

Screenshot of portrait tool illustrating an artist tool using seed as input

String map input

Screenshot of character tool illustrating an artist tool using stringmap
as input

Visuals data input

Screenshot of decal tool illustrating an artist tool using visual data as
input

Nationalities

• 186 countries

• France: Mediterranean 85%, Arab 10%, Bantoid 3%

• England: Germanic 81%, Asian 9%, Bantoid 4%, Mulatto 3%

• Spain: Mediterranean 94%, Bantoid 3%, Arab 2%, Slavic 1%

• Germany: Germanic 92%, Turkic 4%, Slavic 2%, Bantoid 2%

Ethnicity groups

• 15 ethnicity groups

• Amerindian, Arab, Baltic, Bantoid, Brazilian, EastAsian, Germanic,
Indian, Iranian, Mediterranean, Nordic, Sahelian, Slavic, Turkic, Uralic

• Ethnicity groups describe common visual features

• Base head, Eye color, Hair color, Skin color, Hair style, Facial hair,
Eyebrows, Eyelashes, Nose profile

Ethnicity visual features

Screenshot of artist tool for describing ethnicity visual features

Ethnicity visual features

Screenshot of artist tool for describing ethnicity visual features

Weighted arrays

• Weighted array entries preserve real world distributions

• Randomly select an entry using the weighted sum

• Used for selecting ethnicity, as well as each visual feature

Weighted arrays snapshot

• Snapshot contains weighted array entries optimized for runtime

• Artist friendly tables are expanded into multiple weighted arrays

• Entries store the weighted sum of previous entries including self

• Last entry will therefore contain the weighted sum for all entries

• Select random value from 0 to weighted sum of all

• Use either linear or binary search to find entry represented by value

Weighted arrays code sample

static FName GetRandomWeightedName(const FWeightedArray& Array, const FRandomStream& Stream)

{

const float SumWeight = Array[Array.Num() - 1].SumWeight; // last element contains weighted sum of array

const float RandomWeight = Stream.FRandRange(0.0f, SumWeight); // pick random value in range 0..SumWeight

int i = LinearSearchWeightedArray(Array, RandomWeight); // find element for RandomWeight

return Array[i].Name;

}

static int LinearSearchWeightedArray(const FWeightedArray& Array, float RandomWeight)

{

for (int i = 0; i < Array.Num(); i++)

{

if (RandomWeight <= Array[i].SumWeight) // return first element that includes RandomWeight

return i;

}

return Array.Num() - 1;

}

Deterministic randomness

• Must use random number generator deterministically

• Always call random for visual features in same order

• Must allow artists to add visual features over time

• Would like to have characters evolve as their rating increase

Snapshot and versioning

• For each character content release we perform a snapshot

• Snapshots contain the order visual features are calculated

• On character creation server stores seed along with latest snapshot
version

Snapshot contains the following tables

• Nationality to ethnicity mapping

• Ethnicity/gender group to visual string mapping

Evolving characters

1) Populate all features as normal

a) Hidden features (tattoos/ear-rings)

1) Shuffle order of hidden features from character seed

2) Remove features that remain hidden for evolution tier

b) Evolving features (hair style)

2) Artists describe evolution chains for values

3) Use feature value as base value

4) Redetermine feature value for each evolution tier

Blueprints

• Blueprints hide how strings are translated to visual data

• Provides a common interface for all visual features

• Makes it easy to support new visual features with existing tools

• 16 feature handlers

• Used for body parts and clothing

Engine Subsystem

• Character generation is implemented as an engine subsystem

• We use Unreal’s FTask for multithreading

• Subsystem caches tasks of recently generated characters

• Hash of input string map is used for cache key

• Avoids generating the same character multiple times

• Allows result of task to easily be used with multiple task chains

Runtime asset composition

• Copy mesh data

• Morph mesh pieces for gender/build

• Additive adjustments to facial features

• Clip body mesh hidden by clothing

• Add render sections for decals

• Merge mesh pieces

Morph mesh pieces

• Interpolate vertex data from base mesh to morph target

• Used to support gender and bulkiness

• All bodies are based of the same base skeletal mesh

• We use character’s BMI to determine interpolation value

• Tooling allows artists to easily provide additional morphs for clothing

Facial features

• Base head is selected from ethnicity

• We use additive adjustments to make faces unique

• Adjustments are achieved by modifying facial bones

• Artists provide relative min/max transformations per facial feature

• Each base head can have custom min/max limits

• We interpolate transformations using random value per feature

• We apply the resulting transformation using CPU skinning

Scalar map input

Screenshot of facial tool illustrating an artist tool using scalarmap as
input

Quick side note

• Originally string map population occurred on server

• Avoided snapshots as cloud stored each character string map

• Changes to character generation had to involve cloud team

• This included art content updates, slowing iteration time

• Facial features was the breaking straw that convinced us to move
client side

Decals

• Artists are free to add decals to clothing

• Artists specify placement of decal in UV space

• Any triangle that intersects with decal placement will be added to
new render section

• Split existing index buffer by moving intersecting triangles to end

Decals code sample

uint32 BaseIndex = RenderSection.BaseIndex;
uint32 EndIndex = BaseIndex + RenderSection.NumTriangles * 3;
while (BaseIndex < EndIndex)
{

bool ContainsAny = false;
for (int i = 0; i < 3 && !ContainsAny; i++)
{

const uint32 VertexIndex = LODRenderData.IndexBuffer[BaseIndex + i];
FVector2f UV = LODRenderData.GetUV(VertexIndex, UVIndex);
FVector2f TransformedUV = UVTransform.TransformPoint(UV);
ContainsAny = UnitBox.IsInsideOrOn(TransformedUV);

}
if (ContainsAny)
{

EndIndex -= 3;
for (int i = 0; i < 3; i++)
{

std::swap(LODRenderData.IndexBuffer[BaseIndex + i], LODRenderData.IndexBuffer[EndIndex + i]);
}

}
else
{

BaseIndex += 3;
}

}

Clipping

• Remove triangles contained within clipping mesh

• Test if ray from vertex hits clipping mesh an odd or even amount

• Use an acceleration grid to reduce ray intersection tests

• Assume triangles are evenly distributed within the clipping mesh
bounding box

• Project along the shortest axis of bounding box

• Find optimal cell size that gives us desired triangle count per cell

• Store clipping mesh triangles per grid cell

Clipping code sample

ClippingMeshAccelerationGrid AccelerationGrid = GenerateClippingMeshAccelerationGrid(ClippingMesh);

FVector3f Direction = FVector3f::ZeroVector;

Direction[AccelerationGrid.ProjectedAxis] = 1.0f;

UE::Geometry::FIntrRay3Triangle3f Intersector(FRay3f(FVector3f::ZeroVector, Direction), UE::Geometry::FTriangle3f());

for (int i = 0; i < LODRenderData.PositionVertexBuffer.Num(); i++)

{

// Ignore vertices outside AABB

const FVector3f& Point = LODRenderData.PositionVertexBuffer[i];

if (!FMath::PointBoxIntersection(Point, AccelerationGrid.AABBox))

{

continue;

}

Intersector.Ray.Origin = Point;

const FIntPoint IntersectingCell = AccelerationGrid.GetCellPoint(Point);

if (IsInClippingMesh(Intersector, ClippingGeometry, AccelerationGrid.GetCell(IntersectingCell)))

{

OverlappingVertices[i] = true;

}

}

Merge mesh pieces

• Based of Unreal’s SkeletalMeshMerge

• Combines render sections referencing the same material

Your done!

• That’s an overview of our character generation pipeline

• We have just generated a character from a seed to be used in UE5

Thanks to my colleagues

• Torbjörn Söderman

• David Serrat Jiménez

• Andrei Kushner

• Nikolaos Kaltsogiannis

• Marco Musto

• Albin Lundahl

• Daniel Noll

Bonus slides

Texture baking

• Optimization for low detail characters

• Merge render sections with generated texture atlas

• Texture atlas is BC7 encoded using compute shader

• Compute shader writes encoded block to R32G32B32A32_UINT

• FComputeShaderUtils::AddCopyTexturePass does not allow copying
between different pixel formats

	Folie 1
	Folie 2: Seed-based Character Generation in UE5
	Folie 3: GOALS
	Folie 4: Generated characters
	Folie 5: Generated characters
	Folie 6: Unreal’s Mutable plugin
	Folie 7: Toolchain overview
	Folie 8: Seed input
	Folie 9: String map input
	Folie 10: Visuals data input
	Folie 11: Nationalities
	Folie 12: Ethnicity groups
	Folie 13: Ethnicity visual features
	Folie 14: Ethnicity visual features
	Folie 15: Weighted arrays
	Folie 16: Weighted arrays snapshot
	Folie 17: Weighted arrays code sample
	Folie 18: Deterministic randomness
	Folie 19: Snapshot and versioning
	Folie 20: Evolving characters
	Folie 21: Blueprints
	Folie 22: Engine Subsystem
	Folie 23: Runtime asset composition
	Folie 24: Morph mesh pieces
	Folie 25: Facial features
	Folie 26: Scalar map input
	Folie 27: Quick side note
	Folie 28: Decals
	Folie 29: Decals code sample
	Folie 30: Clipping
	Folie 31: Clipping code sample
	Folie 32: Merge mesh pieces
	Folie 33: Your done!
	Folie 34: Thanks to my colleagues
	Folie 35: Bonus slides
	Folie 36: Texture baking

