
Shader To Human
(S2H)

Martin Mittring
MMittring@EA.com

Anushka Nair
AnuNair@EA.com

Martin Mittring
MMittring@EA.com

Anushka Nair
AnuNair@EA.com

SEED

https://github.com/electronicarts/ShaderToHuman

mailto:MMittring@EA.com
mailto:anunair@ea.com
mailto:MMittring@EA.com
mailto:anunair@ea.com
https://github.com/electronicarts/ShaderToHuman

TL;DR: A library for debugging shaders

● Think of PrintF for shaders

● With shader hot reload it’s like a debugger watch window
○ Programmable visualizer 2D / 3D / UI
○ Caution: DIY, performance

● Integrate HLSL in few includes

● Integrate GLSL using preprocessor defines

● Unit tests with screenshot comparison

2

● GitHub: https://github.com/electronicarts/ShaderToHuman

● Gigi browser: search “Human”

● Installation: copy “include” folder (1-4 files)

● Target Frameworks

○ Gigi: https://github.com/electronicarts/gigi

○ Shadertoy: https://www.shadertoy.com

Where to get it?
3

https://github.com/electronicarts/ShaderToHuman
https://github.com/electronicarts/gigi
https://www.shadertoy.com

My SW Development Experience
● C++: Debugger, PrintF debugging
● CryEngine: Visualize Texture, CVars, LUA & C++, logging
● Unreal Engine 3..4: CVars, ShowFlags, Visualizer
● Meta: Unity, Transform math, Quaternion
● EA SEED: GPU driven, Persistent Thread, ThreadGroup, Wave Intrinsics,

Phases

=> needed tooling

4

000.027
NIT
000.086
LUX

Documentation

● HTML docs using JavaScript, WebGL

● User can copy HLSL or GLSL

● WebGL has no define support
=> We use cl.exe as preprocessor, copy .glsl files

● GLSL files outside HTML / JS
=> no local html file, NodeJS / server hosted

5

Demo

6

Integration Options
7

● Implementation
○ Font in texture, fast but adds complications => optional
○ Font in array, no integration needed => default
○ Drivers can implement fast path => had to find it
○ Data is stored in 32 bit array
○ Avoid defines and templates

● Usage
○ s2h_printCharacter(ui, 65u) // basis function

○ s2h_printTxt(ui, 'X', '0', ' ', 'x') // only work in HLSL

○ s2h_printTxt(ui, _X, _0, _SPACE, _x) // works in GLSL too

○ s2h_printTxt(ui, "X0 x") // not portable

(yet)

○ s2h_printLF(ui) // goto

next line (LineFeed)

Print strings from a shader language
8

Gather (s2h.hlsl)
● Implementation

○ struct to pass state and dstColor

● Setup (see top in s2h.hlsl)
#include "s2h.h"

…

ContextGather ui;

s2h_init(ui, pxPos);

…

float4 linColor = background * (1.0f - ui.dstColor.a) + ui.dstColor;

fragColor = float4(s2h_linearToSRGB(linColor.rgb), linColor.a);

● Usage
○ s2h_setCursor(ui, pxPos)

○ s2h_setScale(ui, scale)

○ s2h_printInt(ui, value)

○ s2h_printHex(ui, value)

○ s2h_printFloat(ui, value)

9

2D (s2h.hlsl)

● Implementation
○ Linear color (not sRGB) for AA

● Setup (same as Gather)
float4 linColor = background * (1.0f - ui.dstColor.a) + ui.dstColor;

fragColor = float4(s2h_linearToSRGB(linColor.rgb), linColor.a);

● Usage
○ s2h_drawRectangle(ui, a, b, color)

○ s2h_drawRectangleAA(ui, a,b, borderColor, innerColor, r)

○ s2h_drawLine(ui, a, b, color, r)

○ s2h_drawCrosshair(ui, pos, size, color, r)

○ s2h_drawHalfSpace(ui, plane3, pos, color, k0, k1)

○ s2h_drawArrow(ui, a, b, color, k0, k1)

○ s2h_drawTriangle(ui, tri, color)

10

3D (s2h_3d.hlsl)
● Implementation

○ Ray tracing
○ Struct to store ray, color and z

● Setup (see top in s2h_3d.hlsl)
#include "s2h.h"

#include "s2h_3d.h"

…

struct Context3D context;

s2h_init(context, rayOrigin, rayDirection);

float4 linColor = background * (1.0f - context.dstColor.a) + context.dstColor;

fragColor = float4(s2h_linearToSRGB(linColor.rgb), linColor.a);

● Usage
○ s2h_drawLineWS(context, a, b, color, r)

○ s2h_drawArrowWS(context, a, b, color)

○ s2h_drawBasis(context, mat, r)

○ s2h_drawSphereWS(context, pos, color, r)

○ s2h_drawCheckerBoard(context, pos)

11

Scatter (s2h_scatter.hlsl)

● Implementation:
○ UAV write to another 2D texture
○ Assumes single thread or offset per thread

● Setup (see top in s2h_scatter.hlsl)
#include "s2h.h"

#include "s2h_scatter.h"

void onGfxForAllScatter(int2 pxPos, float4 color)

{ g_computeOutput[pxPos] = color; }

struct ContextScatter ui;

s2h_init(ui);

● Usage (most of Gather functions):
○ s2h_setCursor, s2h_setScale, s2h_printTxt, s2h_printInt, s2h_printHex, s2h_printFloat,

s2h_printBlock, s2h_printDisc, s2h_drawCrosshair

12

Interactive UI and Tables (s2h.hlsl)

● Implementation
○ Need to store state => Gigi buffer UAV
○ ImGUI inspired
○ no GLSL yet

● Usage
○ s2h_progress(ui, width, fraction)

○ s2h_button(ui, width)

○ s2h_radioButton(ui, checked)

○ s2h_checkBox(ui, checked)

○ s2h_sliderFloat(ui, width, value, min, max)

○ s2h_sliderRGB(ui, width, value)

○ s2h_sliderRGBA(ui, width, value)

○ s2h_function => s2h_floatLookupFloat()

13

Tipps

● Gather: don’t forget to composite
color = ui.dstColor;

// ui.dstColor is premultiplied!

color.rgb = color.rgb * (1-ui.dstColor.a) +

ui.dstColor.rgb;

● Scatter: offset per lane / thread
s2h_setCursor(sui, float2(0, GI * 8));

s2h_setCursor(sui, float2(0,

WaveGetLaneIndex() * 8));

float2 p = sui.pxCursor;

s2h_printInt(sui, nodeId);

s2h_setCursor(sui, p + float2(10 * 8, 0));

14

● Assert
if(!ok) InterlockedAdd(pos[12], 1);

if(!ok) InterlockedExchange(pos[13],

nodeId);

● Don’t forget inout e.g.
inout ContextGather ui,

inout ContextScatter sui,

● Debug endless loop
for(;;)

for(int i = 0; i < 200; ++i)

Next

● Open source!

● Adapt to other engines ?
left/right handed, Y/Z up, reverse Z, infinite zFar, Y up/down, V up/down …

● High level features e.g. state for log, 80x25 text, timer, record and playback

● More backends ? GLM for C++, Unity C# ? Unreal Engine C++

● It’s up to you

15

Q
ue

st
io

ns
, T

ha
nk

s ● Shader To Human
Code: https://github.com/electronicarts/ShaderToHuman (see "include" folder)
Interactive Documentation: https://electronicarts.github.io/ShaderToHuman

● Gigi
https://github.com/electronicarts/gigi

Martin Mittring
MMittring@EA.com

Anushka Nair
AnuNair@EA.com

Martin Mittring
MMittring@EA.com

Anushka Nair
AnuNair@EA.com

https://github.com/electronicarts/ShaderToHuman
https://electronicarts.github.io/ShaderToHuman
https://github.com/electronicarts/gigi
mailto:MMittring@EA.com
mailto:anunair@ea.com
mailto:MMittring@EA.com
mailto:anunair@ea.com

	Folie 1: Shader To Human (S2H)
	Folie 2: TL;DR: A library for debugging shaders
	Folie 3: Where to get it?
	Folie 4: My SW Development Experience
	Folie 5: Documentation
	Folie 6: Demo
	Folie 7: Integration Options
	Folie 8: Print strings from a shader language
	Folie 9: Gather (s2h.hlsl)
	Folie 10: 2D (s2h.hlsl)
	Folie 11: 3D (s2h_3d.hlsl)
	Folie 12: Scatter (s2h_scatter.hlsl)
	Folie 13: Interactive UI and Tables (s2h.hlsl)
	Folie 14: Tipps
	Folie 15: Next
	Folie 16: Questions, Thanks

