
Previous generation – World War Z

• We used fixed-height dynamic resolution on consoles
• TAA as an antialiasing solution without upscaling on consoles
• FXAA for low-preset settings on PC

Render resolution Target FPS

Xbox One / PS4 960x1080 – 1920x1080 30

Xbox One X 2880x2160 – 3840x2160 30

PS4 Pro 1920x1080 – 3200x1800 30

• Much later we integrated FSR2 in the end of the frame, and it was a starting point of
our AA/upscale journey on newer generation

Platforms

We use much more temporal techniques on different platforms now:

FSR2 FSR3 FSR4 XESS* DLSS MFSR TAA + FSR1

PC 🗸 🗸 AMD RDNA4 🗸 NVIDIA 2000+ series 🗸

XBOX SERIES X/S 🗸

PS5 🗸

PS5 PRO 🗸

Steam Deck 🗸 🗸 🗸

TAA + FSR1 is intended as a cheap fallback solution. In practice, TAA is mostly used as an
auxiliary temporal pass for several resources like circle of confusion, bloom mask, etc.
*XeSS is only in RoadCraft for now

Why we don’t use FXAA

TAA

Resolution presets
Consoles

XeSS

Render resolution Target resolution Target FPS

Xbox Series X / PS5 Quality mode 1080p – 1440p 2160p 30

Xbox Series X / PS5 Perf mode 720p – 1440p 2160p 60

Xbox Series S 720p – 1080p 1440p 30

PS5 Pro Quality mode 1080p – 2160p 2160p 30

PS5 Pro Perf mode 1080p – 1440p 2160p 60

Mode Resolution Scale

Native 1

Quality 1.5

Balanced 1.7

Performance 2

Ultra performance 3

PC Mode Resolution Scale

AA 1

Ultra quality 1.5

Quality 1.7

Balanced 2

Ultra performance 3

Temporal AA/Upscale in rendering pipeline

We tried to place it after post-proc like in WWZ, but rejected it

Scene TAA/UpscalePost-Processing UI

Pros:
• We win some performance in post-processing depending on resolution scale
Cons:
• Post-processing effects such as motion blur, depth of field, bloom, barrel distortion

change or distort color buffer, so we get ghosting due to mismatch between color and
corresponding depth/velocity values.

• Some color details are lost + potential artifacts due to nonlinear LDR input

FSR before post-processing

FSR after post-processing

FSR after post-processing

FSR before post-processing

FSR after post-processing

FSR before post-processing

Temporal AA/Upscale in rendering pipeline

Standard practice – placing before post-process

Scene TAA/Upscale Post-Processing UI

But in this case we need to perform post-processing in upscaled resolution:

1.122 vs 2.152 ms

Xbox SX quality mode
(1440p -> 2160p)

Temporal AA/Upscale in rendering pipeline

Combined upscale: temporal + spatial in the end

Scene TAA/Upscale Post-Processing FSR1 upscale

UI

Rejected due to:
• FSR1 makes sense only with small resolution scale like <= 1.1

otherwise there is a quality degradation compared to the
classic temporal upscaling scheme

• With small FSR1 scale there is no performance win

Intended to alleviate high post-processing cost

Temporal problems

Main tools to deal with problems

Algorithm Masks

FSR Transparency &
composition mask

Narrows color clamping window, relaxes locks contribution and luminance
instability factor

Reactive mask

Directly affects current frame weight when blending with historyXeSS Responsive mask

MFSR Reactive mask

TAA Reactive mask

DLSS No masks

Mask values are integrated into material system – artists are able to control them

Transparency

VFXs that don’t write to velocity buffer

Here we rely on color clamping that clips
history color if its significantly different
from 3x3 neighborhood colors

• TAA – color clamping is enough to deal with it
• FSR – need VFXs to be written to transparency & composition

mask
• XeSS – we write VFXs into responsive mask. Lower values on

lower render resolution presets

Current frame neighborhood AABB and history clamping

Without transparency mask

With transparency mask

Particles

Fast particles that don’t write to velocity buffer

• Need to increase current frame weight to avoid ghosting and diminishing in size
• Color clamping still helps on noisy background

• TAA – particles write to reactive mask only
• FSR – particles write to reactive mask and transparency & composition to narrow color

clamping AABB and relax locks for noisy background
• MFSR – same as FSR, plus we combine previous frame reactive mask with the current one
• XeSS – particles write to responsive mask

We locally increase current frame weight using reactive mask

Without masks

With masks

Reactive mask

Trails

• Need to adaptively broaden trails to make them 1-2 pixel to avoid excessive blend with
background

• Need to conservatively apply reactive mask just a little in case of moving trail to avoid
ghosting

Since such objects are tiny and not written to depth and velocity

Lasers before fixes

Lasers after fixes

Subpixel shading details

Jitter + color clamping = flickering
1-st frame 2-nd frame0-th frame

Current jitter pos
on original signal

Current frame shading

History sample
History clamp!

Output

Subpixel shading details

We can only alleviate this problem

• Relax color clamping – reduce mask values where possible
• Decrease resolution of normal maps for some grainy

materials
• FSR specific – disable velocity factor

• Introduce luminance aware filter to make fireflies less
bright, currently we did it only in TAA

Potential to-do:

(FFX_API_CONFIGURE_UPSCALE_KEY_FVELOCITYFACTOR)

Velocity factor default

Velocity factor off

Luminance filter off

Luminance filter on

Jittered input problem

Common examples are depth and velocity and all resources that depend on it

Jitter and large effect’s footprint caused flickering in:
• Screen-space artistic lightshafts due to depth
• Screen-space artistic flares due to depth
• Bloom due to artistic bloom mask – mask is written by geometry that needs

artificial bloom
• Depth of field due to circle of confusion and half res color buffer

Solution: apply lightweight TAA or some hysteresis to depth-dependent
resources

Lightshafts TAA on/off

Bloom mask TAA off

Bloom mask TAA off

Bloom mask TAA on

Sharpness

We use AMD RCAS everywhere

Solution: we’ve slightly patched limiters part of RCAS algorithm:

• Problem with different base sharpness level for each upscaler

Solution: we’ve applied additional base sharpness for DLSS:

• Problem with dark pixels in some setups (sharpness close to 1)

dbg_rcasAdditionalDlssSharpness – base sharpness to make up for less sharp output from DLSS and XeSS
upscaleFramegenPrms.sharpness – sharpness from game settings

Idea: decrease lower limiter in cases when central pixel has
lower value than any pixel from his 3x3 neighborhood to
avoid negative results

Sharpness black dots

Sharpness black dots

After lower limiter fix

Ghosting due to sudden changes

Sometimes there are situations when some object suddenly disappears or appears again
For example, armor/weapon change in inventory menu

Reactive mask is ideal choice for a partial history reset.

When armor/weapon changes game logic script triggers writing to the reactive mask there
are no any ghosting.

We don’t use `reset` flag available in each upscalers because it completely resets history and
produce unpleasant convergence effect just after applying

Weapon switch before

Weapon switch before

Weapon switch after

Frame generation

Our Frame generation integration

Integration is standard except for:

• We use render-rate UI, since our UI is static and
we can save some performance

• We use distortion mask to avoid make up for
mismatch between final color and depth &
velocity introduced by some post-effects

Algorithms and platforms:
• FSR3 FG – anywhere on PC
• DLSS FG – NVIDIA, from 4000 series

Barrel distortion effect: before

Barrel distortion effect: after

Distortion mask

• Backward distortion vector – to restore original pixel pos
• Forward distortion vector – to apply distortion again

We need to reflect distortion effect in distortion mask, which stores:

Before distortion After distortion Distortion mask

Distortion mask off

Distortion mask on

Distortion mask

Special VFXs

For some VFXs we explicitly change motion vectors for artistic
purposes, so that motion blur later would directionally blur it

Solution: decrease amplitude of these effects

Object with artificial motion vectors

Motion blur

Reference (without FG)

FG without fixes

Lower amplitude

Third-party tweaks

With DLSS-FG Transparent UI caused strobing and flickering

• We tweak UI alpha channel
• We turn on autodetect UI option when transparent UI

covers almost all screen

With FSR-FG vignette caused artifacts near screen borders

• We had to significantly lower vignette effect with FSR on
• Alternative: move vignette to FSR-FG post-process

FSR3 FG vignette bug

FSR3 FG vignette bug

FSR3 FG vignette bug explanation

Current frame motion vectors Interpolated frame motion vectors We have two samples, so far so good…

We cannot get outside motion vectors FSR3 guesses that they are similar Right sample is outside! FSR3 takes only left 

Lower intensity

Thank you!

	Folie 1: Previous generation – World War Z
	Folie 2: Platforms
	Folie 3: Why we don’t use FXAA
	Folie 4: TAA
	Folie 5: Resolution presets
	Folie 6: Temporal AA/Upscale in rendering pipeline
	Folie 7:
	Folie 8:
	Folie 9:
	Folie 10:
	Folie 11:
	Folie 12:
	Folie 13: Temporal AA/Upscale in rendering pipeline
	Folie 14: Temporal AA/Upscale in rendering pipeline
	Folie 15:
	Folie 16: Main tools to deal with problems
	Folie 17: Transparency
	Folie 18:
	Folie 19:
	Folie 20: Particles
	Folie 21:
	Folie 22:
	Folie 23:
	Folie 24: Trails
	Folie 25:
	Folie 26:
	Folie 27: Subpixel shading details
	Folie 28: Subpixel shading details
	Folie 29:
	Folie 30:
	Folie 31:
	Folie 32:
	Folie 33: Jittered input problem
	Folie 34:
	Folie 35:
	Folie 36:
	Folie 37:
	Folie 38: Sharpness
	Folie 39
	Folie 40:
	Folie 41:
	Folie 42: Ghosting due to sudden changes
	Folie 43:
	Folie 44:
	Folie 45:
	Folie 46:
	Folie 47: Our Frame generation integration
	Folie 48: Barrel distortion effect: before
	Folie 49: Barrel distortion effect: after
	Folie 50: Distortion mask
	Folie 51:
	Folie 52:
	Folie 53: Distortion mask
	Folie 54: Special VFXs
	Folie 55:
	Folie 56:
	Folie 57:
	Folie 58: Third-party tweaks
	Folie 59:
	Folie 60:
	Folie 61:
	Folie 62:
	Folie 63:

