Agenda

* Volume Rendering Introduction
* Motivation
« Data Model

* Render Pipeline
* Fog
 Clouds
« Water

 Conclusion

) Graphics Programming Conference, November 18-20, Breda




Volume Rendering Introduktion
Absorption, Scattering and Emission

Absorption Scattering Emission

O a = absorption coefficient O S = scattering coefficient

) Graphics Programming Conference, November 18-20, Breda




Volume Rendering Introduktion
Scattering

In-scattering Out-scattering

Li(p,w) + dL;(p, w) [ Li(p, w) + dL;(p, w)

dL;(p, w) = a5(p, w) , fo (P, w, w)Li(p, w)dw dt dL;(p, w) = —os(p, w)L;(p, w)dt
S

f»(p, w, w") = phase function

) Graphics Programming Conference, November 18-20, Breda




Volume Rendering Introduktion

Phase Function

* |sotropic phase function
Light is scattered equally in all directions

P(6) = o=

« Henyey-Greenstein (HG) phase function
Approximation of the Mie phase function

|— -05 ~0.2 0 0.2 0.5|

= scattering angle anisotro arameter in [-1,1
I Jang by P | ] Plot of Henyey-Greenstein phase function

with different g values

) Graphics Programming Conference, November 18-20, Breda



Volume Rendering Introduktion
Extinction and Transmittance

T(p — p') = exp (— /Odot(p + wt, w) dt)

) Graphics Programming Conference, November 18-20, Breda




Volume Rendering Introduktion
Volume Rendering Equation

L(p',w) =T (p —p')L(p,w) +

| - g

reduced radiance

d
/ T(I) — pt)aa(ptaw)Le(ptaw)dt =+
0

N _—

accumulated e;nritted radiance

d
/0 T (p — pt)os(pt,w) ( o fp(Pt,w,w’)L(pt,w’)dw') dt

N 4

accumulated in-scattered radiance

) Graphics Programming Conference, November 18-20, Breda




Volume Rendering Introduktion
Volume Rendering Equation

\ i(ehey M
L(p",w) =T (p = p’) p“ag)l aibt-*-D‘E e
reduced Knc@ O -

) Graphics Programming Conference, November 18-20, Breda




Volume rendering introduction
Volume Rendering

* A lot of integrals
* No analytical solution for inhomogeneous media
* Approximation by discrete sampling over distance d from p to p’

ol
Single scattering

Multiple scattering

) Graphics Programming Conference, November 18-20, Breda



Volume Rendering Introduktion

Ray marching

» Single loop per ray
 Accumulate transmittance and in-scatter

» Use energy conservative integration from [Hillaire15]

Single scattering

Multiple scattering

) Graphics Programming Conference, November 18-20, Breda



Volume Rendering Introduktion

Froxel Volumes

* Froxel -> View frustum voxel
[Wronski14] [Hillaire15]

 Clip space 3D textures as cache for
media and lighting

» Low resolution e.g. 160x90x64 .1 %
« Compute media properties and
lighting for each froxel in parallel

* Integrate froxels along depth and
store result per froxel

) Graphics Programming Conference, November 18-20, Breda

/
//;/
;%Ef%g
e
~ T T

~
\\
\




Motivation

@ Graphics Programming Conference, November 18-20, Breda



I\/Iotlvatlon

Unlock The Ancient Spire’s Knowledge

Previous Implementation

7 Graphlcs Programmmg Conference, November 18-20, Breda 2 025




Motivation

Previous Implementation

* Previous implementation presented at GPC 2024 [Feller24]
» Supported different volumetric medias

* Froxels for near-field

« Ray-marching for far-field

 Composed clouds and precomputed atmosphere on top

@ Graphics Programming Conference, November 18-20, Breda 202 5




Motivation

Problems with Previous Implementation
* Missing flexibility
* Quality did not match our expectations

E? Graphics Programming Conference, November 18-20, Breda 202 5




Motivation

Design Goals

* Increase flexibility

~» Unified solution for different media including clouds
Proved difficult due to different visual requirements and scales

' -_~1'. /‘\

[

1ting

- o

. 4 7

f 2™ N .,
- - ' . " ‘
-l - & A - ,Zl -

f? Graphics Programming Conference, November 18-20, Breda 2025



Data Model

@ Graphics Programming Conference, November 18-20, Breda



Data Model

Voxel Fog - Models and Instances

* Fog models
* Artist driven high resolution voxel models
* Down sampled to 16 meter voxels
» Stored as sparse 16”3 tiles with half voxel border on each size
 Store signed distance and density

» Block compressed (BC4 density, BC1 distance scalar encoding
[Schneider23])

* Tiles with uniform density stored as single value

E’ Graphics Programming Conference, November 18-20, Breda 2025




Voxel Fog - Models and Instances

* Fog model tile atlas
« Runtime cache of required tiles
 Signed distance texture (BC1)
» Density texture (BC4)

* Instances could be placed freely within world boundaries
« Reference to single fog model
* Media material

E’ Graphics Programming Conference, November 18-20, Breda



Data Model

]
o
il

2
[
W

Al
?
J
4,
IlY
J
Il

A
/
i

- 2025

= ﬂ ﬂ Al
P gl / | | . ~ |
| . A N 1IN T

y .HT\'

‘? Graphics Programming Conference, November 18-20, Breda



Data Model

Voxel Fog - World Volume

* Covers the entire playable area

* Tile atlas with 16”3 voxels per tile
 Half voxel border on each size for seamless trilinear filtering
« Effective size of 153 voxels

* Multiple block-compressed layers
« BC1 distance field (Bc1 scalar encoding from [Schneider23])
« BC5 density and extinction
« BC3 scatter albedo and detail noise type

» Content updated on the GPU
« Compute shader with runtime block compression

’

E’ Graphics Programming Conference, November 18-20, Breda 202 5



Data Model

Voxel Fog - World Volume

» Resolution is 43 x 13 x 43 cells
* Each cell covers 24073 meter in the game world

* R16_uint texture format
15 bit tile address
1 bit empty flag

 Managed on the CPU

* Indirection texture is updated once the frame
 Allocate and free tiles during indirection texture update
« Schedule GPU update for dirty tiles

 Reuse identical uniform tiles
'A_

E’ Graphics Programming Conference, November 18-20, Breda 202 5




Data Model

Voxel Fog —Bg

¥

>

. . . ':

.

- L -
- '

@ Graphics Programming Conference, November 18-20, Breda 202 5



Data Model

Voxel Fog — Barrier

e Limited to 64 meters around can$e|‘ﬁ
* 1 meter resolution

» 128x128x128 signed distance field texture
* R16G16_snorm

+ R: Distance to dangerous fog intert
Distance to deadly fog interf'

* Runtime generated on the" 5P

:
ni‘

.......

E’ Graphics Programming Conference, November :.8-20, Breda



Data Model

struct VolumetricFogInjectInstanceData

{
uint shape;
float3 position;
floatld rotation;
float3 size;
uint densityTexture;
float3 uvOffset;

float3 uvScale;
float density;
float falloff;
float3 emission;
float extinction;
float3 scattering;

. Graphics Programming Conference, November 18-20, Breda

25



Data Model

Atmosphere and Weather

]
fal
i

E? | Graphics Programming Conference, Nbvember 18-20, Breda 2 o 2 5



Data Model

Atmosphere

* Precomputed sky transmittance

» 2D LUT parametrized by height and zenith
angle

ded to determine sun and moon color

rough atmosphere
'E%n un and moon lighting calculations ' {

R _ &

5 |

= rl 1NE

hy,

>

@ Graphics Programming Conference, November 18-20, Breda 2 o 2 5



Data Model
Aerial Perspective and Height Fog

* Aerial perspective

« Same math and coefficients as
1sed for atmosphere LUT

. c
N
e
W
-

-

E? Graphics Programming Conference, November 18-20, Breda 202 5



Data Model
Clouds

» Rendered at runtime by weather system

» Multiple cloud instances rendered into cloud map
 Artist generated density and height textures
* Tiled and non tiled clouds

» Spherical distortion to simulate curvature of earth

* R16G16 cloud density and height
n projected 1024x1024 texture

_ ‘; TOp d ' IO
~ « Cover “:),;‘.’ ¢ ) d

"- -

.
/

el

-

5 s
r - ’

E

. "l ’
Sl 'Al >’

E’ Graphics Programming Conference, November 18-20, Breda




Rain and Snow Fog

» Fog below clouds where it rains or snows
* 512x512 texture with R16G16

* R: Density
Max height
-+ Top down projected
: Cove.r w {’: ntire .able area
* Runtime generatec
. * Derivec d fr } _ ys clo N !ain map
. op dc ariance . : void fog in buildings or
*‘1 . ‘ g g

- -~ o ’
e AL o

E’ Graphics Programming Conference, November 18-20, Breda




Data Model

o

‘. i 'y‘,ﬂ.
sy

| L ]
| J



Data Model
Water

« Sparse signed distance field
 Fully dynamic
* Generated from water simulation

* First view ray intersection with water surface rendered into
screen space texture

* More in GPC 2025 talk "Water Simulation & Rendering in
Enshrouded” from Simon Stempfle and Andreas Mantler

E’ Graphics Programming Conference, November 18-20, Breda



Data Model

b

Name Value
v il volumetric_fog3_detailnoise: Ve

mode

v whisps
firstOctavelLog2
octavesCount
curl
bias
scale
roughness
contrast

firstOctaveLog2

octavesCount

bias 0.0000
scale 15000
roughness 0.2500
contrast

2 Graphics Programming Conference, November 18-20, Breda 02



Scene Irradiance

Volumetric shadow
volume

Fog and aerial

perspective Intermediate

Water shadow map

Clouds

Water

. Graphics Programming Conference, November 18-20, Breda

Render Pipeline

Final



. Graphics Programming Conference, November 18-20, Breda

Render Pipeline

)25



Render Pipeline

float accumulatedTransimttance = sampleCloudShadows( texCoord );
for( uint i = Qu; i < sweepCount; ++i )
{
if( any( saturate( texCoord ) != texCoord ) )
{
// restart ray
texCoord = frac( texCoord );
accumulatedTransimttance = sampleCloudShadows( texCoord );
¥
// sample extinction and accumulate transmittance
float extinction = sampleExtinction( texCoord );
accumulatedTransimttance *= exp( dt * -extinction );
// temporal accumulate result into voxel
const uint3 pos = floor( texCoord * g_constants.outputSize );
g_output[ pos ] = lerp( g_output[ pos ], accumulatedTransimttance, 1.0f / 64.0f );
// next step
texCoord += texCoordRayDir;

9 Graphics Programming Conference, November 18-20, Breda



. Graphics Programming Conference, November 18-20, Breda

Render Pipeline

)25



. Graphics Programming Conference, November 18-20, Breda

Render Pipeline

)25



Render Pipeline - Fog

: RN \\\ = <
- - < ; - | TN

7 N ~ e -_ _-\:__‘:" S TN 4 e B4 (P B —. { > // A i
! T e s ".Jn s i . N R N r . Tl e
aih |  § e 5 L\ -
b s = e -

N\ .
f Y5 |

raphics Programming Conference, November 18-20, Breda

W
f
=
'



Render Pipeline - Fog

Combined

Depth Buffer‘
- Froxel Volume F—— - o .
Atmosphere p -
J = Ray-marched Fog
Height Fog c
Voxel Fog '
W .
Weather Fog ‘ o |

Detail Noise

Injected Fog
Volumes

? Graphics Programming Conference, November 18-20, Breda 202 5



Render Pipeline - Fog
Froxel Volume

» Contains aerial perspective and all fog types other than voxel
fog

» Resolution depends on screen size and quality setting

* Covers full view depth range up to 10km
« Upper depth limit for all computations based on scene depth

@ Graphlcs Programmmg Conference, November 18-20, Breda



Render Plpelme Fog

i

P 2 S

. = ’ﬂﬁ
s o
= i

2 Graphics Programming Conference, November 18-20, Breda 025



Render Pipeline - Fog

Down sampled

3x3 Dilated

. Graphics Programming Conference, November 18-20, Breda

25



Render Pipeline - Fog
Froxel Volume - Populate

» Output scatter and monochrome extinction coefficients texture
« No atmosphere

 Output radiance texture 4
* Point lights, global illumination and emissive from Injected fog volumes

ity texture
or moon )

L]

» Output directional |
* Primary directional

.;;Tem.por al aGQUF‘I\;_I eVvious frgrr_le

e

e

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog
Froxel Volume - In-scatter & Extinction

« Output in-scatter texture
» Primary directional light
» Point light, Gl and emissive radiance from populate pass

. Output extinction texture.

« Sum extinction fro
extinction

* No longer monochre

2 pass with atmosphere Mie and Rayleigh

.
»

. Ne temporal accu

.~ -+ Phase func‘norrﬁ‘ 2pendent and leads to smearing

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

float3 accumulatedTransmittance = 1.0f;
float3 accumulatedRadiance = 0.0f;
// compute integration slice count and linear start linear depth
const uint integrationSliceCount = (uint)ceil( froxelDepthTexture[ pixelPos ] * sliceCount );
float prevLinearDepth = computelLinearDepthFromFroxelDepth( 0.0f, froxelDepthToLinearDepth );
// loop over all depth slices
for ( int i = 0; i < integrationSliceCount; ++i )
{
const uint3 froxelPos = uint3( pixelPos, i );
// compute integration step length
const float linearDepth = computeLinearDepthFromFroxelDepth( ( i + 1.0f ) * invSliceCount,
froxelDepthToLinearDepth );
const float stepLength = ( linearDepth - prevLinearDepth ) * linearDepthToDistance;
prevLinearDepth = linearDepth;
// load in-scatter and extinction
const float3 inScatter = outputScatterTexture[ froxelPos ];
const float3 extinction = outputTransmittanceTexture[ froxelPos ];
// integrate transmittance and radiance
const float3 transmittance = exp( —-extinction * stepLength );
accumulatedRadiance += inScatter * ( 1.0f - transmittance ) * accumulatedTransmittance;
accumulatedTransmittance *= transmittance;
// store transmittance and radiance
outputScatterTexture[ froxelPos ] = accumulatedRadiance;
outputTransmittanceTexture[ froxelPos ] = accumulatedTransmittance;

. Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

Ray marching - Pipeline

-\

£ - B

Checkerboard

min/max Depth Ray Marching

Upscale
F . LN

Ray Placement Reconstruct Temporal

.‘? Graphics Programming Conference, November 18-20, Breda 2025



Render Pipeline - Fog

Ray marching — Ray Reconstruction

* Mostly follows [Bauer19]
« Ray march 1 of 4 rays in half resolution

» Reconstruct resolution
* Reproject missing rays from previous frame
» Clamp wit ighborhood AABB

 Weight neighborhood pixels by depth difference
Dept ] ghted bilateral filtering of history
1 average of neighborhood if reprojection fails

I} 7o

(

i

L4

_."- 5

T

@ Graphics Programming Conference, November 18-20, Breda




Render Pipeline - Fog

Ray marching — Ray placement

* Half res min/max checkerboard depth

* Ray place ent n 2x2 tile follows [Bauer19]

* Fixup ray pl ent in isolated depth cases

* Outputs R8 I ple index in 2x2 tile

Outputs R16 linear depth of sample in 2x2 tile

f

-

L ) _. ..é- .

E? Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

Ray marching - Upscale & Temporal

* Dithered upscale to full res
« Four half res samples
» Spatio-te ” ‘blue noise offset
« Scale ker ze by distance
» Weighted by depth difference
/

tance weighted depth for reprojection

ed bilateral filtering of history

; ighborhods AABB
| s

-

E? Graphlcs Programmmg Conference, November 18-20, Breda




Render Pipeline - Fog

) Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

) Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

marching

) Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

marching

) Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

marching

) Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

Ray marching - Lighting

* Single scattering from directional light
e Sample cade shadow map
« Sample volum ric shadow volume

* Four addi )g voxel samples in light direction for detail volume
shadows

P Mix of twc

phase functions with different anisotropy [Hillaire16]

E’ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Fog

Ray marching - Lighting

 Lookup radiance froxel volume for point lights, emissive and
global illumi

* Very flat b e of missing volumetric shadows
« Change i y and scatter albedo based on voxel fog density

=g

’ .

@ Graphics Programming Conference, November 18-20, Breda 202



Render Pipeline - Fog

// sample froxel volume

const float3 froxelAccumulatedRadiance = sampleFroxelRadiance( ... );

const float3 froxelAccumulatedTransmittance = sampleFroxelTransmittance( ... );

// compute radiance for given ray segment

const float3 froxelSampleRadiance = froxelAccumulatedRadiance - prevFroxelAccumulatedRadiance;

prevFroxelAccumulatedRadiance = froxelAccumulatedRadiance;

// combine with ray march sample

const float3 sampleRadiance = rayMarchSampleRadiance * froxelAccumulatedTransmittance
+ froxelSampleRadiance * accumulatedTransimttance;

accumulatedRadiance += sampleRadiance;

. Graphics Programming Conference, November 18-20, Breda

25



Render Pipeline - Fog

marching

if transmittance below thre

\

) Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Clouds
ey

s

N, Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Clouds

Clouds

« Ray march 1 of 16 rays in full
resolution

» Store in %4 resolution array texture
with 16 slices

« Store view projection matrix for each
slice

 Reconstruct full res from all slices
« R10G10B10

» R: Directional light scattering intensity
Ambient scattering intensity
« B: Transmittance

* Apply light color and phase function
during reconstruction

@ Graphics Programming Conference, November 18-20, Breda 202 5




Render Pipeline - Clouds

Clouds — Ray marching

« Generate sky Y4 resolution
mask texture from depth buffer

 Early out rays that didn’t hit
the sky

* Find ray start and end
distance by intersecting two
spheres with cloud layer start
and end radius

* Ray march sample count
depends on quality settings

 Early out ray march loop if
transmittance below threshold

@ Graphics Programming Conference, November 18-20, Breda




Render Pipeline - Clouds

Clouds — Ray marching

* Mostly follows [Schneider17]
[Schneider22]

» Construct density from cloud
map and samples relative height

* Erode density by detail noise

E’ Graphics Programming Conference, November 18-20, Breda




Render Pipeline - Clouds
Clouds — Ray marching

* Approximated multi scattering from primary directional light
« Darken edges “powder sugar effect”
« Decrease in in-scattering at the bottom of the cloud

T 33 A3

A
Single scattering - Powder sugar effect Height based in-scattering

E? Graphics Programming Conference, November 18-20, Breda 202 5




Render Pip

omposite

|

Graphics Programming Conference, November 18-20, Breda




Render Pipeline

- ; . WarATy i \,:..l == :'*-Zc“:"_!'a:"

‘? Graphics Programming Conference, November 18-20, Breda 2 02 5



Render Pipeline

_ " 5 | L ¥ 4 ¥ . 5 5 ah i a 3 b
P 4 A SN ly L e oy I = JaTaake, : : 9 o - -
i 3 B o 4 e 3 Yy : : e et St
i : L x P L . . . b
i L 5 y -t ., )
3 - 2 - . Taihl . -
Sl ] /| £ L gL g ey 105 RS . 4
ik 3 [ F L R L . e il ey
: N w : i “11\:
5 s A o : Sh —
f e -3 g : N
o ) .
2 i

P

. ‘? Graph

ics Programming Conference, November 18-20, Breda 202 5



Render Pipeline - Water

E? Graphics Programming Conference, November 18-20, Breda 202 5



Render Pipeline - Water

Water — Observations

* Interface between air and water prohibits us from rendering
water together with other media

« Can be treated as homogenous media

o Water is “exclusive” and won’t be mixed with other media like
fog or atmosphere

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Water

Water — God rays

« Good rays occur where
* Light abruptly change -> shadows
« Light bundled by reflections or refractions

« Want sharp, high frequent god rays from directional light
« Want god rays animated and fast responding

E’ Graphics Programming Conference, November 18-20, Breda



Render Plpelme Water

o, Graphics Programming Conference, November 18-20, Bred



Render Pipeline - Water

2 Graphics Programming Conference, November 18-20, Breda )25



Render Pipeline - Water
-

eI
[ | '{‘ |
A

2 Graphics Programming Conference, November 18-20, Breda )25



Render Pipeline - Water

Water — Sample generation

 Compute shader stores screen space
sample coordinates in lookup texture
« Each row corresponds to one epipolar line

« Each column corresponds to one sample
on the line

» Set invalid samples to negative off-screen
coordinate

* Line and sample count can be freely
chosen

* We use 1024 lines with 512 samples

@ Graphics Programming Conference, November 18-20, Breda

Samples on lines

‘-‘“—

U (] [ ] [ ] [ ] [ ] [ ]

Epipolar lines



Render Pipeline - Water
Water — Sample generation

* We don't want to ray march all the samples
 Place initial ray marching samples every N samples.
* Place more ray marching samples where they are really needed

* Remaining samples will be linear interpolated from the closest
ray marching samples

@ Graphics Programming Conference, November 18-20, Breda




Render Plpelme Water
TN i

-
=

a
-

.‘? Graphics Programming Conference, November 18-20, Breda 2025



Render Pipeline - Water
Water — Sample generation

 Run compute shader with one thread per epipolar coordinate

Thread group size equal to initial ray marching sample distance

First sample in thread group and last sample in line will always ray marched
InterlockedOr() depth and lighting discontinuities in group shared bitmask

F.inhc{ djgcontinuity using shared bitmask and add ray-marching sample on left and
right side

Append all ray marching samples to a buffer

InterlockedOr() all ray marching samples in R32 uint bitmask texture for later
interpolation

Thread Group Thread Group
A A
4 N/ \
N
Epipolar Line > 8
pIp N |,
N v
Initial Sample Discontinuity Last Sample
in Line

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Water

Water — Ray marching

* Ray-march in light space

« Sample cascade shadow map and shadow
volume

« Compute transmittance from water shadow
map

« Sample animated caustics texture

* Phase function is applied later in compositing

* Phase function could break due to linear
iInterpolation on epipolar line

 Output sparsely into epipolar texture

@ Graphics Programming Conference, November 18-20, Breda




Render Pipeline - Water
Water — Interpolation

* Linearly interpolate missing samples

 Linear search two nearest ray-marching
samples

» Use R32 uint bitmask texture from sample
generation

* We have an upper limit for the linear search
because of initial sample location

e Store the result in same texture where we
load ray marched samples from

* No contention because ray marched samples will
not be interpolated

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Water

Water — Interpolation

» Still need to “unwrap” the epipolar texture to screen space
« Compute screen space ray going from the light through the pixel
* Find two closest epipolar lines from which we will interpolate

* Project current pixel onto the epipolar lines using the precomputed start
and end points

« Compute UV coordinates and bilinear weights of the four epipolar
interpolation samples

« Weight by depth difference of epipolar sample and pixels depth
* Apply HG phase function

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline - Water
Water — Other in-scattering

« Ray march froxel volume to calculate in-scatter of other light
sources
* Low sample count

* Fetch precomputed point light, global illumination and emissive lighting
from froxel volume texture

» Add to directional light in-scattering
 Calculate max ray length from water extinction coefficients

@ Graphics Programming Conference, November 18-20, Breda



Render Pipeline

Water — Compositing

Two full-screen passes -
- \
Needed because of refracti

Iso water surface is

_.n'

actic ough air/water interface
f‘: ed during composite

ck out Andreas Mantle

%

.‘? Graphics Programming Conference, November 18-20, Breda 2025



Render Pipeline
Transparent Draws

* Transparent draws are separated into underwater and above
water draws

* For underwater draws we need to apply water only
» Calculate transmittance based on pixels depth
» Multiply color by transmittance
» Multiply alpha by transmittance luminance

» For over water draws we need to combine with fog only
* Inspired by Variance Based Depth [Tatarchuk13]

 Calculate fraction of fog by using mean and variance from
transmittance weighted depth moments

 Fails in some situations -> not happy with this solution

E’ Graphics Programming Conference, November 18-20, Breda



Conclusion

Conclusion

- * Volume rendering is hard
ified solution for different media did not work for us

. S oal .

n),poral accumt ation not ideal for volumetric rendering but

-

-

. - :
L ' : phySIC y Pc ’." 1 “\ the

. aqu; 4

- s i
- ® 2
-

.‘? Graphics Programming Conference, November 18-20, Breda 2025



Conclusion

,<? Graphics Programming Conference, November 18-20, Breda 2025



	Folie 2: Agenda 
	Folie 3: Absorption, Scattering and Emission
	Folie 4: Scattering
	Folie 5: Phase Function
	Folie 6: Extinction and Transmittance
	Folie 7: Volume Rendering Equation
	Folie 8: Volume Rendering Equation
	Folie 9: Volume Rendering
	Folie 10: Ray marching
	Folie 11: Froxel Volumes 
	Folie 13
	Folie 14: Previous Implementation
	Folie 15: Previous Implementation
	Folie 16: Problems with Previous Implementation
	Folie 17: Design Goals
	Folie 20: Voxel Fog - Models and Instances
	Folie 21: Voxel Fog - Models and Instances
	Folie 22: Voxel Fog - Models and Instances
	Folie 23: Voxel Fog - World Volume
	Folie 24: Voxel Fog - World Volume
	Folie 25: Voxel Fog - World Volume
	Folie 26: Voxel Fog –Barrier
	Folie 27: Voxel Fog – Barrier
	Folie 28: Injected Fog Volumes
	Folie 29: Atmosphere and Weather
	Folie 30: Atmosphere
	Folie 31: Aerial Perspective and Height Fog
	Folie 32: Clouds
	Folie 33: Rain and Snow Fog
	Folie 34: Water
	Folie 35: Water
	Folie 36: Detail Noise
	Folie 37: Render Pipeline
	Folie 38: Volumetric shadow Volume
	Folie 39: Volumetric shadow Volume – Sweep
	Folie 40: Water shadow map
	Folie 41: Water shadow map
	Folie 43: Fog
	Folie 44: Fog Pipeline
	Folie 45: Froxel Volume
	Folie 46: Froxel Volume – Depth Distribution
	Folie 47: Froxel Volume - Froxel Depth
	Folie 48: Froxel Volume - Populate
	Folie 49: Froxel Volume - In-scatter & Extinction
	Folie 51: Froxel Volume - Integrate
	Folie 52: Ray marching - Pipeline
	Folie 53: Ray marching – Ray Reconstruction
	Folie 54: Ray marching – Ray placement
	Folie 55: Ray marching - Upscale & Temporal
	Folie 56: Ray marching
	Folie 57: Ray marching
	Folie 58: Ray marching
	Folie 59: Ray marching
	Folie 60: Ray marching
	Folie 61: Ray marching - Lighting
	Folie 62: Ray marching - Lighting
	Folie 63: Ray marching – Combine with Froxel Volume
	Folie 64: Ray marching
	Folie 65: Clouds
	Folie 66: Clouds
	Folie 67: Clouds – Ray marching
	Folie 68: Clouds – Ray marching
	Folie 69: Clouds – Ray marching
	Folie 70: Composite
	Folie 71: Composite
	Folie 72: Composite
	Folie 73: Water
	Folie 74: Water – Observations
	Folie 75: Water – God rays
	Folie 76: Water – Epipolar sampling
	Folie 78: Water – Sample generation
	Folie 79: Water – Sample generation
	Folie 80: Water – Sample generation
	Folie 81: Water – Sample generation
	Folie 82: Water – Sample generation
	Folie 83: Water – Sample generation
	Folie 84: Water – Ray marching
	Folie 85: Water – Interpolation
	Folie 86: Water – Interpolation
	Folie 87: Water – Other in-scattering
	Folie 88: Water – Compositing
	Folie 89: Transparent Draws
	Folie 90: Conclusion
	Folie 91

