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Absorption, Scattering and Emission

= scattering coefficient= absorption coefficient

Absorption Scattering
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Emission



Scattering

𝑓𝑝(p, 𝜔, 𝜔′) = phase function
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Phase Function

 Volume Rendering Introduktion

Plot of Henyey-Greenstein phase function 

with different g values

• Isotropic phase function 

Light is scattered equally in all directions

• Henyey-Greenstein (HG) phase function 

Approximation of the Mie phase function

g = scattering angle anisotropy parameter in [-1,1]



Extinction and Transmittance
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Volume Rendering Equation
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Volume Rendering Equation

 Volume Rendering Introduktion



Volume Rendering
• A lot of integrals

• No analytical solution for inhomogeneous media

• Approximation by discrete sampling over distance d from p to p’

Volume rendering introduction

p p’

d

Single scattering

Multiple scattering



Ray marching
• Single loop per ray

• Accumulate transmittance and in-scatter

• Use energy conservative integration from [Hillaire15]

 Volume Rendering Introduktion
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Froxel Volumes 
• Froxel -> View frustum voxel 

[Wronski14] [Hillaire15] 

• Clip space 3D textures as cache for 
media and lighting

• Low resolution e.g. 160x90x64

• Compute media properties and 
lighting for each froxel in parallel

• Integrate froxels along depth and 
store result per froxel

 Volume Rendering Introduktion
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Motivation

Previous Implementation
• Previous implementation presented at GPC 2024 [Feller24] 

• Supported different volumetric medias

• Froxels for near-field

• Ray-marching for far-field

• Composed clouds and precomputed atmosphere on top



Problems with Previous Implementation
• Missing flexibility

• Quality did not match our expectations

Motivation



Design Goals

Motivation

• Increase flexibility 

• Unified solution for different media including clouds
• Proved difficult due to different visual requirements and scales

• Dropped after first iteration 

• Realistic and detailed lighting

• Stable under motion

• Physically based but with some artistic freedom

• Water



Voxel Fog - Models and Instances
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Voxel Fog - Models and Instances

Data Model

• Fog models
• Artist driven high resolution voxel models

• Down sampled to 16 meter voxels

• Stored as sparse 16^3 tiles with half voxel border on each size

• Store signed distance and density

• Block compressed (BC4 density, BC1 distance scalar encoding 
[Schneider23])

• Tiles with uniform density stored as single value



Voxel Fog - Models and Instances

Data Model

• Fog model tile atlas
• Runtime cache of required tiles

• Signed distance texture (BC1)

• Density texture (BC4)

• Instances could be placed freely within world boundaries
• Reference to single fog model

• Media material



Voxel Fog - World Volume

Data Model



Voxel Fog - World Volume

Data Model

• Covers the entire playable area

• Tile atlas with 16^3 voxels per tile
• Half voxel border on each size for seamless trilinear filtering 

• Effective size of 15^3 voxels 

• Multiple block-compressed layers
• BC1 distance field (Bc1 scalar encoding from [Schneider23])

• BC5 density and extinction 

• BC3 scatter albedo and detail noise type

• Content updated on the GPU
• Compute shader with runtime block compression



Voxel Fog - World Volume
• Resolution is 43 x 13 x 43 cells

• Each cell covers 240^3 meter in the game world

• R16_uint texture format
• 15 bit tile address

• 1 bit empty flag

• Managed on the CPU
• Indirection texture is updated once the frame

• Allocate and free tiles during indirection texture update

• Schedule GPU update for dirty tiles

• Reuse identical uniform tiles

 Data Model



Voxel Fog –Barrier

 Data Model



Voxel Fog – Barrier
• Limited to 64 meters around camera

• 1 meter resolution

• 128x128x128 signed distance field texture

• R16G16_snorm
• R: Distance to dangerous fog interface

• G: Distance to deadly fog interface

• Runtime generated on the GPU from fog and scene voxel data
• Fast Hierarchical 3D Distance Transforms on the GPU [Cuntz07]

• Followed by single jump flood pass

• As a bonus we get ground fog in the shroud for free

 Data Model



Injected Fog Volumes
• Spawned by VFX 

• Box or sphere shape

• Optional density texture

• The only emissive media in 
pipeline

• See [Feller24] for more details

struct VolumetricFogInjectInstanceData
{

uint shape;
float3 position;
float4 rotation;
float3 size;
uint densityTexture;
float3 uvOffset;
float3 uvScale;
float density;
float falloff;
float3 emission;
float extinction;
float3 scattering;

};

 Data Model



Atmosphere and Weather

 Data Model



Atmosphere
• Precomputed sky transmittance 

• 2D LUT parametrized by height and zenith 
angle

• Needed to determine sun and moon color 
through atmosphere

• Used in all sun and moon lighting calculations

• Precomputed sky atmosphere [Bruneton08]
• 3D LUTs ignore earth shadow [Elek09] 

• Multiple scattering and Ozone

• Improved LUT parameterization [Elek09] 

• Additional LUT for cloud ambient lighting

 Data Model

Single slice from 

Mie LUT

Single slice from 

Rayleigh LUT



Aerial Perspective and Height Fog
• Aerial perspective

• Same math and coefficients as 
used for atmosphere LUT 
computation

• No multiple scattering

• Analytic height fog
• Exponential height falloff

• Density and albedo

 Data Model



Clouds
• Rendered at runtime by weather system

• Multiple cloud instances rendered into cloud map

• Artist generated density and height textures

• Tiled and non tiled clouds

• Spherical distortion to simulate curvature of earth

• R16G16 cloud density and height

• Top down projected 1024x1024 texture 

• Covers 80x80 km around world center 

 Data Model



Rain and Snow Fog
• Fog below clouds where it rains or snows

• 512x512 texture with R16G16
• R: Density

• G: Max height

• Top down projected

• Covers the entire playable area

• Runtime generated

• Derived from weather systems cloud and rain map

• Top down variance shadow map to avoid fog in buildings or 
caves

 Data Model



Water

 Data Model



Water
• Sparse signed distance field

• Fully dynamic

• Generated from water simulation

• First view ray intersection with water surface rendered into 
screen space texture

• More in GPC 2025 talk “Water Simulation & Rendering in 
Enshrouded” from Simon Stempfle and Andreas Mantler

 Data Model



Detail Noise
• Adds detail to voxel fog and cloud ray marching

• Based on Nubis Cubed [Schneider23]

• Two noise types
• Curly-Alligator noise
• Alligator noise

• Configurable in editor and generated by asset pipeline

• Tileable

• 128x128x128 four channels uncompressed

 Data Model

Curly-Alligator Alligator Variations



Render Pipeline

 Render Pipeline

Volumetric shadow 

volume
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Final



Volumetric shadow Volume

 Render Pipeline

Cloud



Volumetric shadow Volume – Sweep

 Render Pipeline

float accumulatedTransimttance = sampleCloudShadows( texCoord );
for( uint i = 0u; i < sweepCount; ++i )
{

if( any( saturate( texCoord ) != texCoord ) )
{

// restart ray
texCoord = frac( texCoord );
accumulatedTransimttance = sampleCloudShadows( texCoord );

}
// sample extinction and accumulate transmittance
float extinction = sampleExtinction( texCoord );
accumulatedTransimttance *= exp( dt * -extinction );
// temporal accumulate result into voxel
const uint3 pos = floor( texCoord * g_constants.outputSize );
g_output[ pos ] = lerp( g_output[ pos ], accumulatedTransimttance, 1.0f / 64.0f );
// next step
texCoord += texCoordRayDir;

}



Water shadow map
• Approximate water depth and 

transmittance for directional 
light

• Render water depth map in 
light space

• Camera centered clip map

• Snap to pixel position to avoid 
flickering under movement

• Used for
• Direct lighting
• Underwater volume
• Global illumination

 Render Pipeline



Water shadow map
• Overestimates transmittance 

in case of overlapping water 
surfaces

• Not a big problem in practice 
because water is mostly flat 
and surrounded by geometry 

• Only apply water shadows to 
underwater geometry

 Render Pipeline



Fog

 Render Pipeline - Fog



Fog Pipeline

 Render Pipeline - Fog

Froxel Volume

Scene 

Depth Buffer

Ray-marched Fog

Atmosphere

Height Fog

Weather Fog

Injected Fog 

Volumes

Detail Noise

Voxel Fog

Water Surface and 

Depth Buffer
Combined 

Depth Buffer



Froxel Volume
• Contains aerial perspective and all fog types other than voxel 

fog

• Resolution depends on screen size and quality setting

• Covers full view depth range up to 10km

• Upper depth limit for all computations based on scene depth 
buffer

 Render Pipeline - Fog



Froxel Volume – Depth Distribution

 Render Pipeline - Fog
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Froxel Volume - Froxel Depth
• Down-sample scene depth buffer

• Max depth

• Dilate
• 3x3 max depth kernel

• Linear filtering artifacts without dilation

 Render Pipeline - Fog

Down sampled

3x3 Dilated



Froxel Volume - Populate
• Output scatter and monochrome extinction coefficients texture

• No atmosphere

• Output radiance texture
• Point lights, global illumination and emissive from Injected fog volumes

• Output directional light visibility texture
• Primary directional light ( sun or moon )

• Temporal accumulate with previous frame

 Render Pipeline - Fog



Froxel Volume - In-scatter & Extinction
• Output in-scatter texture

• Primary directional light 

• Point light, GI and emissive radiance from populate pass

• Output extinction texture
• Sum extinction from populate pass with atmosphere Mie and Rayleigh 

extinction

• No longer monochrome 

• No temporal accumulation, 
• Phase function is view angle dependent and leads to smearing

 Render Pipeline - Fog



Froxel Volume - Integrate

 Render Pipeline - Fog

float3 accumulatedTransmittance = 1.0f;
float3 accumulatedRadiance = 0.0f;
// compute integration slice count and linear start linear depth
const uint integrationSliceCount = (uint)ceil( froxelDepthTexture[ pixelPos ] * sliceCount );
float prevLinearDepth = computeLinearDepthFromFroxelDepth( 0.0f, froxelDepthToLinearDepth );
// loop over all depth slices
for ( int i = 0; i < integrationSliceCount; ++i )
{

const uint3 froxelPos = uint3( pixelPos, i );
// compute integration step length
const float linearDepth = computeLinearDepthFromFroxelDepth( ( i + 1.0f ) * invSliceCount, 
froxelDepthToLinearDepth );
const float stepLength = ( linearDepth - prevLinearDepth ) * linearDepthToDistance;
prevLinearDepth = linearDepth;
// load in-scatter and extinction
const float3 inScatter = outputScatterTexture[ froxelPos ];
const float3 extinction = outputTransmittanceTexture[ froxelPos ];
// integrate transmittance and radiance
const float3 transmittance = exp( -extinction * stepLength );
accumulatedRadiance += inScatter * ( 1.0f - transmittance ) * accumulatedTransmittance;
accumulatedTransmittance *= transmittance;
// store transmittance and radiance
outputScatterTexture[ froxelPos ] = accumulatedRadiance;
outputTransmittanceTexture[ froxelPos ] = accumulatedTransmittance;

}



Ray marching - Pipeline

 Render Pipeline - Fog

Depth Buffer

Checkerboard 

min/max Depth

Ray Placement

Ray Marching

Reconstruct

Upscale

Temporal

Froxel Volume



Ray marching – Ray Reconstruction
• Mostly follows [Bauer19]

• Ray march 1 of 4 rays in half resolution

• Reconstruct half resolution
• Reproject missing rays from previous frame

• Clamp with neighborhood AABB

• Weight neighborhood pixels by depth difference

• Depth weighted bilateral filtering of history

• Use weighted average of neighborhood if reprojection fails

 Render Pipeline - Fog



Ray marching – Ray placement
• Half res min/max checkerboard depth

• Ray placement in 2x2 tile follows [Bauer19]

• Fixup ray placement in isolated depth cases

• Outputs R8 sample index in 2x2 tile

• Outputs R16 linear depth of sample in 2x2 tile

 Render Pipeline - Fog



Ray marching - Upscale & Temporal
• Dithered upscale to full res

• Four half res samples

• Spatio-temporal blue noise offset

• Scale kernel size by distance

• Weighted by depth difference

• Temporal filter 
• Use transmittance weighted depth for reprojection

• Depth weighted bilateral filtering of history

• Clamp with neighborhoods AABB

 Render Pipeline - Fog



Ray marching

 Render Pipeline - Fog



Ray marching

 Render Pipeline - Fog



Ray marching

 Render Pipeline - Fog



Ray marching

 Render Pipeline - Fog



Ray marching

 Render Pipeline - Fog



Ray marching - Lighting
• Single scattering from directional light 

• Sample cascade shadow map 

• Sample volumetric shadow volume

• Four addition fog voxel samples in light direction for detail volume 
shadows

• Mix of two HG phase functions with different anisotropy [Hillaire16] 

 Render Pipeline - Fog



Ray marching - Lighting
• Lookup radiance froxel volume for point lights, emissive and 

global illumination
• Very flat because of missing volumetric shadows

• Change intensity and scatter albedo based on voxel fog density

 Render Pipeline - Fog



Ray marching – Combine with Froxel Volume

• Sample radiance and transmittance from froxel volume

• Compute froxel radiance of ray segment by subtracting previous 
sample radiance

• Sum froxel and ray march radiance weighted by the 
transmittance of each other

 Render Pipeline - Fog

// sample froxel volume
const float3 froxelAccumulatedRadiance = sampleFroxelRadiance( ... );
const float3 froxelAccumulatedTransmittance = sampleFroxelTransmittance( ... );
// compute radiance for given ray segment
const float3 froxelSampleRadiance = froxelAccumulatedRadiance - prevFroxelAccumulatedRadiance;
prevFroxelAccumulatedRadiance = froxelAccumulatedRadiance;
// combine with ray march sample
const float3 sampleRadiance = rayMarchSampleRadiance * froxelAccumulatedTransmittance 

+ froxelSampleRadiance * accumulatedTransimttance;
accumulatedRadiance += sampleRadiance;



Ray marching

 Render Pipeline - Fog

Terminate if transmittance below threshold

or maximum distance reached



Clouds

 Render Pipeline - Clouds



Clouds
• Ray march 1 of 16 rays in full 

resolution

• Store in ¼ resolution array texture 
with 16 slices

• Store view projection matrix for each 
slice

• Reconstruct full res from all slices

• R10G10B10
• R: Directional light scattering intensity

• G: Ambient scattering intensity

• B: Transmittance

• Apply light color and phase function 
during reconstruction

 Render Pipeline - Clouds



Clouds – Ray marching
• Generate sky ¼ resolution 

mask texture from depth buffer

• Early out rays that didn’t hit 
the sky

• Find ray start and end 
distance by intersecting two 
spheres with cloud layer start 
and end radius

• Ray march sample count 
depends on quality settings

• Early out ray march loop if 
transmittance below threshold

 Render Pipeline - Clouds



Clouds – Ray marching
• Mostly follows [Schneider17] 

[Schneider22]

• Construct density from cloud 
map and samples relative height

• Erode density by detail noise

 Render Pipeline - Clouds



Clouds – Ray marching
• Approximated multi scattering from primary directional light

• Darken edges “powder sugar effect”

• Decrease in in-scattering at the bottom of the cloud

 Render Pipeline - Clouds

Single scattering Powder sugar effect Height based in-scattering



Composite

 Render Pipeline



Composite

 Render Pipeline



Composite

 Render Pipeline



Water

 Render Pipeline - Water



Water – Observations
• Interface between air and water prohibits us from rendering 

water together with other media

• Can be treated as homogenous media

• Water is “exclusive” and won’t be mixed with other media like 
fog or atmosphere

 Render Pipeline - Water



Water – God rays
• Good rays occur where

• Light abruptly change -> shadows 

• Light bundled by reflections or refractions

• Want sharp, high frequent god rays from directional light

• Want god rays animated and fast responding

 Render Pipeline - Water



Water – Epipolar sampling

 Render Pipeline - Water



Water – Sample generation
• Find start and end points for all 

epipolar lines
• Project light on screen

• If light is on screen
• start point is the lights screen space 

position

• If light is outside of screen
• some lines are complete outside 

and became invalid

• The remaining lines need to be 
intersected and truncated against 
the screen borders

• Equidistantly placing end points 
along the border of the screen

• Store start and endpoints in buffer

x

 Render Pipeline - Water



Water – Sample generation
• Equidistantly place samples between start and end points

• If light source is close to screen border samples became to dense
• Scale sample distance to be equal in screen space
• Samples at end of epipolar line could be out of screen and will became 

invalid

x

x

 Render Pipeline - Water



Water – Sample generation
• Compute shader stores screen space 

sample coordinates in lookup texture
• Each row corresponds to one epipolar line

• Each column corresponds to one sample 
on the line

• Set invalid samples to negative off-screen 
coordinate

• Line and sample count can be freely 
chosen

• We use 1024 lines with 512 samples

Samples on lines
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Out of screen

 Render Pipeline - Water



Water – Sample generation
• We don’t want to ray march all the samples

• Place initial ray marching samples every N samples.

• Place more ray marching samples where they are really needed

• Remaining samples will be linear interpolated from the closest 
ray marching samples

 Render Pipeline - Water



Water – Sample generation

 Render Pipeline - Water



Water – Sample generation
• Run compute shader with one thread per epipolar coordinate

• Thread group size equal to initial ray marching sample distance

• First sample in thread group and last sample in line will always ray marched

• InterlockedOr() depth and lighting discontinuities in group shared bitmask

• Find discontinuity using shared bitmask and add ray-marching sample on left and 
right side

• Append all ray marching samples to a buffer

• InterlockedOr() all ray marching samples in R32 uint bitmask texture for later 
interpolation

Epipolar Line

DiscontinuityInitial Sample Last Sample 

in Line

Thread GroupThread Group

 Render Pipeline - Water



Water – Ray marching
• Ray-march in light space

• Sample cascade shadow map and shadow 
volume

• Compute transmittance from water shadow 
map

• Sample animated caustics texture

• Phase function is applied later in compositing
• Phase function could break due to linear 

interpolation on epipolar line

• Output sparsely into epipolar texture

 Render Pipeline - Water



Water – Interpolation
• Linearly interpolate missing samples

• Linear search two nearest ray-marching 
samples

• Use R32 uint bitmask texture from sample 
generation

• We have an upper limit for the linear search 
because of initial sample location

• Store the result in same texture where we 
load ray marched samples from

• No contention because ray marched samples will 
not be interpolated

 Render Pipeline - Water



Water – Interpolation
• Still need to “unwrap” the epipolar texture to screen space

• Compute screen space ray going from the light through the pixel

• Find two closest epipolar lines from which we will interpolate

• Project current pixel onto the epipolar lines using the precomputed start 
and end points

• Compute UV coordinates and bilinear weights of the four epipolar
interpolation samples

• Weight by depth difference of epipolar sample and pixels depth

• Apply HG phase function

 Render Pipeline - Water



Water – Other in-scattering
• Ray march froxel volume to calculate in-scatter of other light 

sources
• Low sample count

• Fetch precomputed point light, global illumination and emissive lighting 
from froxel volume texture

• Add to directional light in-scattering

• Calculate max ray length from water extinction coefficients

 Render Pipeline - Water



Water – Compositing
• Two full-screen passes

• Needed because of refraction through air/water interface

• Also water surface is rendered during composite

• For more information's check out Andreas Mantler’s talk about 
water rendering in Enshrouded

 Render Pipeline



Transparent Draws
• Transparent draws are separated into underwater and above 

water draws

• For underwater draws we need to apply water only
• Calculate transmittance based on pixels depth

• Multiply color by transmittance

• Multiply alpha by transmittance luminance

• For over water draws we need to combine with fog only
• Inspired by Variance Based Depth [Tatarchuk13]

• Calculate fraction of fog by using mean and variance from 
transmittance weighted depth moments

• Fails in some situations -> not happy with this solution

 Render Pipeline



Conclusion
• Volume rendering is hard

• Unified solution for different media did not work for us

• Temporal accumulation not ideal for volumetric rendering but 
unfortunately still needed

• Sometimes difficult to remain physically based and still meet the 
art direction

• Transparent draw compositing is subject of ongoing research

• We would like to integrate volume rendering in our GI but 
haven’t found a suitable solution yet

 Conclusion



 Conclusion

Thank you !

Questions ?
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