
Agenda

• Volume Rendering Introduction

• Motivation

• Data Model

• Render Pipeline
• Fog

• Clouds

• Water

• Conclusion

Agenda

Absorption, Scattering and Emission

= scattering coefficient= absorption coefficient

Absorption Scattering

 Volume Rendering Introduktion

Emission

Scattering

𝑓𝑝(p, 𝜔, 𝜔′) = phase function

 Volume Rendering Introduktion

dt

𝐿𝑖(p, 𝜔)𝐿𝑖 p, 𝜔 + d𝐿𝑖(p, 𝜔)

p

dt

𝐿𝑖(p, 𝜔)𝐿𝑖 p, 𝜔 + d𝐿𝑖(p, 𝜔)

p

d𝐿𝑖 p, 𝜔 = −𝜎𝑠 p, 𝜔 𝐿𝑖(p, 𝜔)dtd𝐿𝑖 p, 𝜔 = 𝜎𝑠 p, 𝜔 න
𝑆2

𝑓𝑝(p, 𝜔, 𝜔′)𝐿𝑖(p, 𝜔′)d𝜔′ dt

In-scattering Out-scattering

Phase Function

 Volume Rendering Introduktion

Plot of Henyey-Greenstein phase function

with different g values

• Isotropic phase function

Light is scattered equally in all directions

• Henyey-Greenstein (HG) phase function

Approximation of the Mie phase function

g = scattering angle anisotropy parameter in [-1,1]

Extinction and Transmittance

 Volume Rendering Introduktion

p’ p

d

Volume Rendering Equation

 Volume Rendering Introduktion

Volume Rendering Equation

 Volume Rendering Introduktion

Volume Rendering
• A lot of integrals

• No analytical solution for inhomogeneous media

• Approximation by discrete sampling over distance d from p to p’

Volume rendering introduction

p p’

d

Single scattering

Multiple scattering

Ray marching
• Single loop per ray

• Accumulate transmittance and in-scatter

• Use energy conservative integration from [Hillaire15]

 Volume Rendering Introduktion

p p’

d

Single scattering

Multiple scattering

Froxel Volumes
• Froxel -> View frustum voxel

[Wronski14] [Hillaire15]

• Clip space 3D textures as cache for
media and lighting

• Low resolution e.g. 160x90x64

• Compute media properties and
lighting for each froxel in parallel

• Integrate froxels along depth and
store result per froxel

 Volume Rendering Introduktion

Motivation

Motivation

Previous Implementation

Motivation

Previous Implementation
• Previous implementation presented at GPC 2024 [Feller24]

• Supported different volumetric medias

• Froxels for near-field

• Ray-marching for far-field

• Composed clouds and precomputed atmosphere on top

Problems with Previous Implementation
• Missing flexibility

• Quality did not match our expectations

Motivation

Design Goals

Motivation

• Increase flexibility

• Unified solution for different media including clouds
• Proved difficult due to different visual requirements and scales

• Dropped after first iteration

• Realistic and detailed lighting

• Stable under motion

• Physically based but with some artistic freedom

• Water

Voxel Fog - Models and Instances

Data Model

Voxel Fog - Models and Instances

Data Model

• Fog models
• Artist driven high resolution voxel models

• Down sampled to 16 meter voxels

• Stored as sparse 16^3 tiles with half voxel border on each size

• Store signed distance and density

• Block compressed (BC4 density, BC1 distance scalar encoding
[Schneider23])

• Tiles with uniform density stored as single value

Voxel Fog - Models and Instances

Data Model

• Fog model tile atlas
• Runtime cache of required tiles

• Signed distance texture (BC1)

• Density texture (BC4)

• Instances could be placed freely within world boundaries
• Reference to single fog model

• Media material

Voxel Fog - World Volume

Data Model

Voxel Fog - World Volume

Data Model

• Covers the entire playable area

• Tile atlas with 16^3 voxels per tile
• Half voxel border on each size for seamless trilinear filtering

• Effective size of 15^3 voxels

• Multiple block-compressed layers
• BC1 distance field (Bc1 scalar encoding from [Schneider23])

• BC5 density and extinction

• BC3 scatter albedo and detail noise type

• Content updated on the GPU
• Compute shader with runtime block compression

Voxel Fog - World Volume
• Resolution is 43 x 13 x 43 cells

• Each cell covers 240^3 meter in the game world

• R16_uint texture format
• 15 bit tile address

• 1 bit empty flag

• Managed on the CPU
• Indirection texture is updated once the frame

• Allocate and free tiles during indirection texture update

• Schedule GPU update for dirty tiles

• Reuse identical uniform tiles

 Data Model

Voxel Fog –Barrier

 Data Model

Voxel Fog – Barrier
• Limited to 64 meters around camera

• 1 meter resolution

• 128x128x128 signed distance field texture

• R16G16_snorm
• R: Distance to dangerous fog interface

• G: Distance to deadly fog interface

• Runtime generated on the GPU from fog and scene voxel data
• Fast Hierarchical 3D Distance Transforms on the GPU [Cuntz07]

• Followed by single jump flood pass

• As a bonus we get ground fog in the shroud for free

 Data Model

Injected Fog Volumes
• Spawned by VFX

• Box or sphere shape

• Optional density texture

• The only emissive media in
pipeline

• See [Feller24] for more details

struct VolumetricFogInjectInstanceData
{

uint shape;
float3 position;
float4 rotation;
float3 size;
uint densityTexture;
float3 uvOffset;
float3 uvScale;
float density;
float falloff;
float3 emission;
float extinction;
float3 scattering;

};

 Data Model

Atmosphere and Weather

 Data Model

Atmosphere
• Precomputed sky transmittance

• 2D LUT parametrized by height and zenith
angle

• Needed to determine sun and moon color
through atmosphere

• Used in all sun and moon lighting calculations

• Precomputed sky atmosphere [Bruneton08]
• 3D LUTs ignore earth shadow [Elek09]

• Multiple scattering and Ozone

• Improved LUT parameterization [Elek09]

• Additional LUT for cloud ambient lighting

 Data Model

Single slice from

Mie LUT

Single slice from

Rayleigh LUT

Aerial Perspective and Height Fog
• Aerial perspective

• Same math and coefficients as
used for atmosphere LUT
computation

• No multiple scattering

• Analytic height fog
• Exponential height falloff

• Density and albedo

 Data Model

Clouds
• Rendered at runtime by weather system

• Multiple cloud instances rendered into cloud map

• Artist generated density and height textures

• Tiled and non tiled clouds

• Spherical distortion to simulate curvature of earth

• R16G16 cloud density and height

• Top down projected 1024x1024 texture

• Covers 80x80 km around world center

 Data Model

Rain and Snow Fog
• Fog below clouds where it rains or snows

• 512x512 texture with R16G16
• R: Density

• G: Max height

• Top down projected

• Covers the entire playable area

• Runtime generated

• Derived from weather systems cloud and rain map

• Top down variance shadow map to avoid fog in buildings or
caves

 Data Model

Water

 Data Model

Water
• Sparse signed distance field

• Fully dynamic

• Generated from water simulation

• First view ray intersection with water surface rendered into
screen space texture

• More in GPC 2025 talk “Water Simulation & Rendering in
Enshrouded” from Simon Stempfle and Andreas Mantler

 Data Model

Detail Noise
• Adds detail to voxel fog and cloud ray marching

• Based on Nubis Cubed [Schneider23]

• Two noise types
• Curly-Alligator noise
• Alligator noise

• Configurable in editor and generated by asset pipeline

• Tileable

• 128x128x128 four channels uncompressed

 Data Model

Curly-Alligator Alligator Variations

Render Pipeline

 Render Pipeline

Volumetric shadow

volume

Water shadow map

Clouds

Water

Fog and aerial

perspective

Scene Irradiance

Intermediate

Final

Volumetric shadow Volume

 Render Pipeline

Cloud

Volumetric shadow Volume – Sweep

 Render Pipeline

float accumulatedTransimttance = sampleCloudShadows(texCoord);
for(uint i = 0u; i < sweepCount; ++i)
{

if(any(saturate(texCoord) != texCoord))
{

// restart ray
texCoord = frac(texCoord);
accumulatedTransimttance = sampleCloudShadows(texCoord);

}
// sample extinction and accumulate transmittance
float extinction = sampleExtinction(texCoord);
accumulatedTransimttance *= exp(dt * -extinction);
// temporal accumulate result into voxel
const uint3 pos = floor(texCoord * g_constants.outputSize);
g_output[pos] = lerp(g_output[pos], accumulatedTransimttance, 1.0f / 64.0f);
// next step
texCoord += texCoordRayDir;

}

Water shadow map
• Approximate water depth and

transmittance for directional
light

• Render water depth map in
light space

• Camera centered clip map

• Snap to pixel position to avoid
flickering under movement

• Used for
• Direct lighting
• Underwater volume
• Global illumination

 Render Pipeline

Water shadow map
• Overestimates transmittance

in case of overlapping water
surfaces

• Not a big problem in practice
because water is mostly flat
and surrounded by geometry

• Only apply water shadows to
underwater geometry

 Render Pipeline

Fog

 Render Pipeline - Fog

Fog Pipeline

 Render Pipeline - Fog

Froxel Volume

Scene

Depth Buffer

Ray-marched Fog

Atmosphere

Height Fog

Weather Fog

Injected Fog

Volumes

Detail Noise

Voxel Fog

Water Surface and

Depth Buffer
Combined

Depth Buffer

Froxel Volume
• Contains aerial perspective and all fog types other than voxel

fog

• Resolution depends on screen size and quality setting

• Covers full view depth range up to 10km

• Upper depth limit for all computations based on scene depth
buffer

 Render Pipeline - Fog

Froxel Volume – Depth Distribution

 Render Pipeline - Fog

log
𝑥 − 𝑛

𝑏
+ 1

log(𝑎 + 1)
, 𝑎 = 𝑘𝑓, 𝑏 =

𝑓 − 𝑛

𝑎
, 𝑛 = 𝑛𝑒𝑎𝑟, 𝑓 = 𝑓𝑎𝑟, x = n ≤ x ≤ f , 𝑘 = 0 < 𝑘

Froxel Volume - Froxel Depth
• Down-sample scene depth buffer

• Max depth

• Dilate
• 3x3 max depth kernel

• Linear filtering artifacts without dilation

 Render Pipeline - Fog

Down sampled

3x3 Dilated

Froxel Volume - Populate
• Output scatter and monochrome extinction coefficients texture

• No atmosphere

• Output radiance texture
• Point lights, global illumination and emissive from Injected fog volumes

• Output directional light visibility texture
• Primary directional light (sun or moon)

• Temporal accumulate with previous frame

 Render Pipeline - Fog

Froxel Volume - In-scatter & Extinction
• Output in-scatter texture

• Primary directional light

• Point light, GI and emissive radiance from populate pass

• Output extinction texture
• Sum extinction from populate pass with atmosphere Mie and Rayleigh

extinction

• No longer monochrome

• No temporal accumulation,
• Phase function is view angle dependent and leads to smearing

 Render Pipeline - Fog

Froxel Volume - Integrate

 Render Pipeline - Fog

float3 accumulatedTransmittance = 1.0f;
float3 accumulatedRadiance = 0.0f;
// compute integration slice count and linear start linear depth
const uint integrationSliceCount = (uint)ceil(froxelDepthTexture[pixelPos] * sliceCount);
float prevLinearDepth = computeLinearDepthFromFroxelDepth(0.0f, froxelDepthToLinearDepth);
// loop over all depth slices
for (int i = 0; i < integrationSliceCount; ++i)
{

const uint3 froxelPos = uint3(pixelPos, i);
// compute integration step length
const float linearDepth = computeLinearDepthFromFroxelDepth((i + 1.0f) * invSliceCount,
froxelDepthToLinearDepth);
const float stepLength = (linearDepth - prevLinearDepth) * linearDepthToDistance;
prevLinearDepth = linearDepth;
// load in-scatter and extinction
const float3 inScatter = outputScatterTexture[froxelPos];
const float3 extinction = outputTransmittanceTexture[froxelPos];
// integrate transmittance and radiance
const float3 transmittance = exp(-extinction * stepLength);
accumulatedRadiance += inScatter * (1.0f - transmittance) * accumulatedTransmittance;
accumulatedTransmittance *= transmittance;
// store transmittance and radiance
outputScatterTexture[froxelPos] = accumulatedRadiance;
outputTransmittanceTexture[froxelPos] = accumulatedTransmittance;

}

Ray marching - Pipeline

 Render Pipeline - Fog

Depth Buffer

Checkerboard

min/max Depth

Ray Placement

Ray Marching

Reconstruct

Upscale

Temporal

Froxel Volume

Ray marching – Ray Reconstruction
• Mostly follows [Bauer19]

• Ray march 1 of 4 rays in half resolution

• Reconstruct half resolution
• Reproject missing rays from previous frame

• Clamp with neighborhood AABB

• Weight neighborhood pixels by depth difference

• Depth weighted bilateral filtering of history

• Use weighted average of neighborhood if reprojection fails

 Render Pipeline - Fog

Ray marching – Ray placement
• Half res min/max checkerboard depth

• Ray placement in 2x2 tile follows [Bauer19]

• Fixup ray placement in isolated depth cases

• Outputs R8 sample index in 2x2 tile

• Outputs R16 linear depth of sample in 2x2 tile

 Render Pipeline - Fog

Ray marching - Upscale & Temporal
• Dithered upscale to full res

• Four half res samples

• Spatio-temporal blue noise offset

• Scale kernel size by distance

• Weighted by depth difference

• Temporal filter
• Use transmittance weighted depth for reprojection

• Depth weighted bilateral filtering of history

• Clamp with neighborhoods AABB

 Render Pipeline - Fog

Ray marching

 Render Pipeline - Fog

Ray marching

 Render Pipeline - Fog

Ray marching

 Render Pipeline - Fog

Ray marching

 Render Pipeline - Fog

Ray marching

 Render Pipeline - Fog

Ray marching - Lighting
• Single scattering from directional light

• Sample cascade shadow map

• Sample volumetric shadow volume

• Four addition fog voxel samples in light direction for detail volume
shadows

• Mix of two HG phase functions with different anisotropy [Hillaire16]

 Render Pipeline - Fog

Ray marching - Lighting
• Lookup radiance froxel volume for point lights, emissive and

global illumination
• Very flat because of missing volumetric shadows

• Change intensity and scatter albedo based on voxel fog density

 Render Pipeline - Fog

Ray marching – Combine with Froxel Volume

• Sample radiance and transmittance from froxel volume

• Compute froxel radiance of ray segment by subtracting previous
sample radiance

• Sum froxel and ray march radiance weighted by the
transmittance of each other

 Render Pipeline - Fog

// sample froxel volume
const float3 froxelAccumulatedRadiance = sampleFroxelRadiance(...);
const float3 froxelAccumulatedTransmittance = sampleFroxelTransmittance(...);
// compute radiance for given ray segment
const float3 froxelSampleRadiance = froxelAccumulatedRadiance - prevFroxelAccumulatedRadiance;
prevFroxelAccumulatedRadiance = froxelAccumulatedRadiance;
// combine with ray march sample
const float3 sampleRadiance = rayMarchSampleRadiance * froxelAccumulatedTransmittance

+ froxelSampleRadiance * accumulatedTransimttance;
accumulatedRadiance += sampleRadiance;

Ray marching

 Render Pipeline - Fog

Terminate if transmittance below threshold

or maximum distance reached

Clouds

 Render Pipeline - Clouds

Clouds
• Ray march 1 of 16 rays in full

resolution

• Store in ¼ resolution array texture
with 16 slices

• Store view projection matrix for each
slice

• Reconstruct full res from all slices

• R10G10B10
• R: Directional light scattering intensity

• G: Ambient scattering intensity

• B: Transmittance

• Apply light color and phase function
during reconstruction

 Render Pipeline - Clouds

Clouds – Ray marching
• Generate sky ¼ resolution

mask texture from depth buffer

• Early out rays that didn’t hit
the sky

• Find ray start and end
distance by intersecting two
spheres with cloud layer start
and end radius

• Ray march sample count
depends on quality settings

• Early out ray march loop if
transmittance below threshold

 Render Pipeline - Clouds

Clouds – Ray marching
• Mostly follows [Schneider17]

[Schneider22]

• Construct density from cloud
map and samples relative height

• Erode density by detail noise

 Render Pipeline - Clouds

Clouds – Ray marching
• Approximated multi scattering from primary directional light

• Darken edges “powder sugar effect”

• Decrease in in-scattering at the bottom of the cloud

 Render Pipeline - Clouds

Single scattering Powder sugar effect Height based in-scattering

Composite

 Render Pipeline

Composite

 Render Pipeline

Composite

 Render Pipeline

Water

 Render Pipeline - Water

Water – Observations
• Interface between air and water prohibits us from rendering

water together with other media

• Can be treated as homogenous media

• Water is “exclusive” and won’t be mixed with other media like
fog or atmosphere

 Render Pipeline - Water

Water – God rays
• Good rays occur where

• Light abruptly change -> shadows

• Light bundled by reflections or refractions

• Want sharp, high frequent god rays from directional light

• Want god rays animated and fast responding

 Render Pipeline - Water

Water – Epipolar sampling

 Render Pipeline - Water

Water – Sample generation
• Find start and end points for all

epipolar lines
• Project light on screen

• If light is on screen
• start point is the lights screen space

position

• If light is outside of screen
• some lines are complete outside

and became invalid

• The remaining lines need to be
intersected and truncated against
the screen borders

• Equidistantly placing end points
along the border of the screen

• Store start and endpoints in buffer

x

 Render Pipeline - Water

Water – Sample generation
• Equidistantly place samples between start and end points

• If light source is close to screen border samples became to dense
• Scale sample distance to be equal in screen space
• Samples at end of epipolar line could be out of screen and will became

invalid

x

x

 Render Pipeline - Water

Water – Sample generation
• Compute shader stores screen space

sample coordinates in lookup texture
• Each row corresponds to one epipolar line

• Each column corresponds to one sample
on the line

• Set invalid samples to negative off-screen
coordinate

• Line and sample count can be freely
chosen

• We use 1024 lines with 512 samples

Samples on lines

E
p
ip

o
la

r
lin

e
s

Out of screen

 Render Pipeline - Water

Water – Sample generation
• We don’t want to ray march all the samples

• Place initial ray marching samples every N samples.

• Place more ray marching samples where they are really needed

• Remaining samples will be linear interpolated from the closest
ray marching samples

 Render Pipeline - Water

Water – Sample generation

 Render Pipeline - Water

Water – Sample generation
• Run compute shader with one thread per epipolar coordinate

• Thread group size equal to initial ray marching sample distance

• First sample in thread group and last sample in line will always ray marched

• InterlockedOr() depth and lighting discontinuities in group shared bitmask

• Find discontinuity using shared bitmask and add ray-marching sample on left and
right side

• Append all ray marching samples to a buffer

• InterlockedOr() all ray marching samples in R32 uint bitmask texture for later
interpolation

Epipolar Line

DiscontinuityInitial Sample Last Sample

in Line

Thread GroupThread Group

 Render Pipeline - Water

Water – Ray marching
• Ray-march in light space

• Sample cascade shadow map and shadow
volume

• Compute transmittance from water shadow
map

• Sample animated caustics texture

• Phase function is applied later in compositing
• Phase function could break due to linear

interpolation on epipolar line

• Output sparsely into epipolar texture

 Render Pipeline - Water

Water – Interpolation
• Linearly interpolate missing samples

• Linear search two nearest ray-marching
samples

• Use R32 uint bitmask texture from sample
generation

• We have an upper limit for the linear search
because of initial sample location

• Store the result in same texture where we
load ray marched samples from

• No contention because ray marched samples will
not be interpolated

 Render Pipeline - Water

Water – Interpolation
• Still need to “unwrap” the epipolar texture to screen space

• Compute screen space ray going from the light through the pixel

• Find two closest epipolar lines from which we will interpolate

• Project current pixel onto the epipolar lines using the precomputed start
and end points

• Compute UV coordinates and bilinear weights of the four epipolar
interpolation samples

• Weight by depth difference of epipolar sample and pixels depth

• Apply HG phase function

 Render Pipeline - Water

Water – Other in-scattering
• Ray march froxel volume to calculate in-scatter of other light

sources
• Low sample count

• Fetch precomputed point light, global illumination and emissive lighting
from froxel volume texture

• Add to directional light in-scattering

• Calculate max ray length from water extinction coefficients

 Render Pipeline - Water

Water – Compositing
• Two full-screen passes

• Needed because of refraction through air/water interface

• Also water surface is rendered during composite

• For more information's check out Andreas Mantler’s talk about
water rendering in Enshrouded

 Render Pipeline

Transparent Draws
• Transparent draws are separated into underwater and above

water draws

• For underwater draws we need to apply water only
• Calculate transmittance based on pixels depth

• Multiply color by transmittance

• Multiply alpha by transmittance luminance

• For over water draws we need to combine with fog only
• Inspired by Variance Based Depth [Tatarchuk13]

• Calculate fraction of fog by using mean and variance from
transmittance weighted depth moments

• Fails in some situations -> not happy with this solution

 Render Pipeline

Conclusion
• Volume rendering is hard

• Unified solution for different media did not work for us

• Temporal accumulation not ideal for volumetric rendering but
unfortunately still needed

• Sometimes difficult to remain physically based and still meet the
art direction

• Transparent draw compositing is subject of ongoing research

• We would like to integrate volume rendering in our GI but
haven’t found a suitable solution yet

 Conclusion

 Conclusion

Thank you !

Questions ?

	Folie 2: Agenda
	Folie 3: Absorption, Scattering and Emission
	Folie 4: Scattering
	Folie 5: Phase Function
	Folie 6: Extinction and Transmittance
	Folie 7: Volume Rendering Equation
	Folie 8: Volume Rendering Equation
	Folie 9: Volume Rendering
	Folie 10: Ray marching
	Folie 11: Froxel Volumes
	Folie 13
	Folie 14: Previous Implementation
	Folie 15: Previous Implementation
	Folie 16: Problems with Previous Implementation
	Folie 17: Design Goals
	Folie 20: Voxel Fog - Models and Instances
	Folie 21: Voxel Fog - Models and Instances
	Folie 22: Voxel Fog - Models and Instances
	Folie 23: Voxel Fog - World Volume
	Folie 24: Voxel Fog - World Volume
	Folie 25: Voxel Fog - World Volume
	Folie 26: Voxel Fog –Barrier
	Folie 27: Voxel Fog – Barrier
	Folie 28: Injected Fog Volumes
	Folie 29: Atmosphere and Weather
	Folie 30: Atmosphere
	Folie 31: Aerial Perspective and Height Fog
	Folie 32: Clouds
	Folie 33: Rain and Snow Fog
	Folie 34: Water
	Folie 35: Water
	Folie 36: Detail Noise
	Folie 37: Render Pipeline
	Folie 38: Volumetric shadow Volume
	Folie 39: Volumetric shadow Volume – Sweep
	Folie 40: Water shadow map
	Folie 41: Water shadow map
	Folie 43: Fog
	Folie 44: Fog Pipeline
	Folie 45: Froxel Volume
	Folie 46: Froxel Volume – Depth Distribution
	Folie 47: Froxel Volume - Froxel Depth
	Folie 48: Froxel Volume - Populate
	Folie 49: Froxel Volume - In-scatter & Extinction
	Folie 51: Froxel Volume - Integrate
	Folie 52: Ray marching - Pipeline
	Folie 53: Ray marching – Ray Reconstruction
	Folie 54: Ray marching – Ray placement
	Folie 55: Ray marching - Upscale & Temporal
	Folie 56: Ray marching
	Folie 57: Ray marching
	Folie 58: Ray marching
	Folie 59: Ray marching
	Folie 60: Ray marching
	Folie 61: Ray marching - Lighting
	Folie 62: Ray marching - Lighting
	Folie 63: Ray marching – Combine with Froxel Volume
	Folie 64: Ray marching
	Folie 65: Clouds
	Folie 66: Clouds
	Folie 67: Clouds – Ray marching
	Folie 68: Clouds – Ray marching
	Folie 69: Clouds – Ray marching
	Folie 70: Composite
	Folie 71: Composite
	Folie 72: Composite
	Folie 73: Water
	Folie 74: Water – Observations
	Folie 75: Water – God rays
	Folie 76: Water – Epipolar sampling
	Folie 78: Water – Sample generation
	Folie 79: Water – Sample generation
	Folie 80: Water – Sample generation
	Folie 81: Water – Sample generation
	Folie 82: Water – Sample generation
	Folie 83: Water – Sample generation
	Folie 84: Water – Ray marching
	Folie 85: Water – Interpolation
	Folie 86: Water – Interpolation
	Folie 87: Water – Other in-scattering
	Folie 88: Water – Compositing
	Folie 89: Transparent Draws
	Folie 90: Conclusion
	Folie 91

