
Hi There

About me:
EA SEED (2019-)
Improbable (2019)
EA Frostbite Physics (2010-2019)

Vaporwave is a product of the SEED 
Dynamic Worlds team, particularly these 
folks ------>

I’m Chris

Chris Lewin Henrik HalenWill Donnelly

Marin Moran Martin Mittring Jon Greenberg



Infinite Content
Efficient creation with AI as a copilot to creativity



Vaporwave Why?

Want to represent high resolution 
volumetric effects in games and simulate 
all air near the player.

Standard fluid simulations are not really 
efficient enough to do this.

Standard volume rendering approaches are 
not well suited to this kind of content.

So we need to push forward in both 
directions.



Fluid Simulation Basics



Fluid Dynamics Sims

Incompressible Euler equations (constant 
density):

𝐷𝒖

𝐷𝑡
= −

1

𝜌0
∇p + 𝐠

∇ ⋅ 𝒖 = 0

Usually simulate using Stable Fluids
algorithm:
1. 𝒖 ← 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝒖

2. 𝒖 ← 𝑎𝑑𝑣𝑒𝑐𝑡 𝒖

3. 𝒖 ← 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑓𝑜𝑟𝑐𝑒𝑠(𝒖)

Simulating all the air is expensive so we try 
to use GPU and good algorithms.

[Sebastien Lague]

[Matthias Mueller]



Semi-Lagrangian Advection

Move the velocity field in the same way as 
resampling an image.

Conserves mass as long as the velocity 
field is divergence-free.

Get current velocity at each sample point 
and trace backwards

Sample velocity at arbitrary location and 
bring it back to the start position.



Semi-Lagrangian Advection

Move the velocity field in the same way as 
resampling an image.

Conserves mass as long as the velocity 
field is divergence-free.

Get current velocity at each sample point 
and trace backwards

Sample velocity at arbitrary location and 
bring it back to the start position.



Semi-Lagrangian Advection

Move the velocity field in the same way as 
resampling an image.

Conserves mass as long as the velocity 
field is divergence-free.

Get current velocity at each sample point 
and trace backwards

Sample velocity at arbitrary location and 
bring it back to the start position.



Semi-Lagrangian Advection

Move the velocity field in the same way as 
resampling an image.

Conserves mass as long as the velocity 
field is divergence-free.

Get current velocity at each sample point 
and trace backwards

Sample velocity at arbitrary location and 
bring it back to the start position.



CFL Numbers

We can classify velocities by CFL number

CFL=1 means moving one grid cell per time 
step.

Axis-aligned flows of 𝐶𝐹𝐿 = 𝑛 ∈ ℤ are exact

All other flows accumulate resampling error



Advection Quality

Use higher order sampling (e.g. tricubic) to 
reduce resampling error

Use better tracing (e.g. RK4) to better 
resolve curved trajectories in the flow

Exact velocity, Linear sampling Exact velocity, Cubic sampling

Exact velocity, 
Exact sampling

Euler velocity, 
Exact sampling

RK4 velocity, 
Exact sampling



Projection

Makes the velocity field divergence free by 
generating hydrostatic forces.

[Matthias Mueller – 10 Minute Physics]



Projection

This can be done by solving a single large 
linear system of equations 𝐴𝒙 = 𝑏

The matrix A operates on x like a 
convolution with a small kernel.

Solver choices:
Preconditioned Conjugate Gradient
Jacobi/Gauss-Seidel/SOR
Compact Poisson Filters
Fourier Transform
Multigrid



Fluid Sim Drawbacks

Large voxel count – n^3 in 3d

Need a good solver to get O(n^3) 
performance

Looks bad with low resolution

This limits range of the sim.



Alternative approaches

Low resolution invisible sim pushing 
opaques around – Returnal

Small visible sim located around a 
character - Returnal

Advection-diffusion sim – God of War



Our Simulation



What we propose

Extend effective range of sim using mixed 
resolution simulation

Allows for sim and render lod

Locate simulation around the camera and 
regularly rebase

All fluid effects around a player can interact



Mixed Resolution Simulation

Multiple grid resolutions in one simulation.

Not to be confused with Multigrid solver!!

Classically tries to concentrate resolution 
near fluid detail.

Difficult to get big performance boost this 
way.

We propose a much simpler alternative suited 
for real-time use.



Nested Grids

Advantages:
Constant-time lookup, no indirection
No adverse cache effects
No remeshing
Mathematically more convenient
Worst-case performance is better

Disadvantages:
Can only have high detail in one location
Best-case performance is worse



Clipmap Nested Grids

Clipmaps!
= Sequence of grids with same voxel 
count, increasing size

Uniform Grid Mipmapped Grid Clipmap Nested Grid



Clipmap Nested Grids

Similar to Geometry Clipmaps

[Asirvatham and Hoppe, GPU Gems 2]



Nested Grid Implementation

Want all data in one GPU resource.

Clipmaps all have same voxel count.

Voxels are same size in texture space but 
2x larger at each level in sim space.

Core Region: covered by the previous 
clip. Occupies 1/8 volume in 3D.

Inset Region: n voxel wide halo used for 
sampling.



Advection

Just need to figure out how to sample 
anywhere in sim space.

Rays that hit in the interior of a clip are 
same as dense case.

Rays that hit near the Core Region can 
be handled using the inset values.

Rays that hit near the exterior of a clip 
are demoted to the next LOD.



Advection

Just need to figure out how to sample 
anywhere in sim space.

Rays that hit in the interior of a clip are 
same as dense case.

Rays that hit near the Core Region can 
be handled using the inset values.

Rays that hit near the exterior of a clip 
are demoted to the next LOD.



Advection

Just need to figure out how to sample 
anywhere in sim space.

Rays that hit in the interior of a clip are 
same as dense case.

Rays that hit near the Core Region can 
be handled using the inset values.

Rays that hit near the exterior of a clip 
are demoted to the next LOD.



Advection

Just need to figure out how to sample 
anywhere in sim space.

Rays that hit in the interior of a clip are 
same as dense case.

Rays that hit near the Core Region can 
be handled using the inset values.

Rays that hit near the exterior of a clip 
are demoted to the next LOD.



Rebasing

Natural placement of grid is around 
camera

Have to move the grid without artefacts.

Naïve counter-advection causes 
smearing.

Use integer CFL trick!

Exact within one clip but pops at the 
boundary.

Naïve counter-advection

Snapped to integer CFL



Projection

Solving projection is analogous to applying 
a very wide convolution

Very slow when only using neighbours!

Can apply known popular techniques:

Fourier Transform

Separable blur -> Compact Poisson Filters

Multi-resolution blur -> Multigrid

Jacobi iterative solver



Projection

Solving projection is analogous to applying 
a very wide convolution.

Very slow when only using neighbours!

Can apply known popular techniques:

Fourier Transform

Separable blur -> Compact Poisson Filters

Multi-resolution blur -> Multigrid

https://blog.frost.kiwi/dual-kawase/

Multi-resolution blur

Multigrid V-Cycle



Clipmap Multigrid Projection

Based on [Martin and Cartwright 96]

Replaces the mip sequence with a clip 
sequence

Downsample clip into core region of next

1. Solve on k



Clipmap Multigrid Projection

Based on [Martin and Cartwright 96]

Replaces the mip sequence with a clip 
sequence

Downsample clip into core region of next

1. Solve on k
2. Interpolate into core of k+1



Clipmap Multigrid Projection

Based on [Martin and Cartwright 96]

Replaces the mip sequence with a clip 
sequence

Downsample clip into core region of next

1. Solve on k
2. Interpolate into core of k+1

4. Interpolate 
results back to k
Solve on k

3. Recurse….



Clipmap Multigrid Projection

Based on [Martin and Cartwright 96]

Replaces the mip sequence with a clip 
sequence

Downsample clip into core region of next

Paper shows how to handle outer 
boundary

1. Solve on k
2. Interpolate into core of k+1

4. Interpolate 
results back to k
Solve on k

3. Recurse….



Control

Add material, velocity, collision using 3d 
Brushes.

Use UE global distance field to get world 
collision.

One velocity field and four visual-
physical materials allowed.



Niagara Interaction

Provide a Niagara Data Interface to allow 
read-write access to sim from GPU 
particle effects.



Rendering



Unreal’s Renderer

Unreal’s volumetric rendering is based on froxels, 
and designed around static, thin fog.

Vaporwave content is:
● Thick,
● Inhomogeneous,
● Fast-moving.

We don’t want to rely on temporal reprojection.

Occlusion of indirect lighting is important.

Sébastien Hillaire, Advances 2015
Physically-based and Unified Volumetric Rendering in Frostbite



Primary Traversal

We just use ray-marching to the depth 
buffer

Can sample a single volume

Do light culling+sampling, shadowing etc 
during traversal.

No need to stash results in a froxel grid.



Lighting

Self-occlusion/shadowing is important for 
look of thick smoke

Without these features, only a limited 
look is achievable

Full scattering in the realm of an 
expensive path-tracer

We propose Volumetric Occlusion (VO)

No self-occlusion

Will Donnelly



Lighting

Self-occlusion/shadowing is important for 
look of thick smoke.

Without these features, only a limited 
look is achievable.

Full scattering in the realm of an 
expensive path-tracer.

We propose Volumetric Occlusion (VO).

Volumetric Occlusion



Lighting

Self-occlusion/shadowing is important for 
look of thick smoke.

Without these features, only a limited 
look is achievable.

Full scattering in the realm of an 
expensive path-tracer.

We propose Volumetric Occlusion (VO).

(It’s not just AO for volumes).

Volumetric Occlusion (no directional component)



Volumetric Occlusion

Punctual lighting: can raymarch but 
expensive.

Environmental light sources: no option.

Only want visual shaping to break up bulk 
– exact self-shadowing not important.

The normal does this job in surface 
rendering, can we do something similar?

VO is a principled elaboration of this idea.

“Can we just calculate some kind of normal-like thing?”



Single scattering

Single scattering from environment is an integral:

We multiply together:
●Albedo
●Phase function
●Beam transmittance i.e. visibility 0…1
●Environment lighting

Integrate over all incoming light directions.



VO Single scattering from environment

Visibility function is the negative exponential of the optical thickness

Approximate optical thickness with a linear function:

Convolution is implemented as a sum over the density Clip/Mip hierarchy.

Visibility is exponential of a linear function - a spherical gaussian:

Integral of Spherical Harmonic lighting times Spherical Gaussian visibility is solved analytically.

𝑇 𝑥,𝜔 = 𝑒−𝜏(𝑥,𝜔) 𝜏 𝑥, 𝜔 = න

0

∞

𝜎𝑡 𝑥 + 𝑡𝜔 𝑑𝑡

𝜏 𝑥, 𝜔 ≈ 𝑣0 𝑥 + Ԧ𝑣1 𝑥 ⋅ 𝜔

𝑣0 𝑥 = න𝑑3𝑦
𝜎𝑡(𝑦)

4𝜋𝑟2
Ԧ𝑣1 𝑥 = න𝑑3𝑦

𝜎𝑡(𝑦)

4𝜋𝑟2
3 Ƹ𝑟

𝑇 𝑥, 𝜔 = 𝑒−𝑣0 𝑥 +𝑣1 𝑥 ⋅𝜔



Single scattering from environment

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

No Occlusion Volumetric Occlusion

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

Path Traced Reference

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut



Phase function

Phase function is typically Henyey-Greenstein:

We fit a normalized spherical gaussian:

Multiplication with visibility is cheap! Product of spherical gaussians is spherical gaussian.



Phase Function

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

Backscattering g = -0.8 Isotropic g = 0

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

Forward scattering g = 0.8

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

• Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut

VO PT VO PT VO PT



Multiple scattering

Reduce to 1D: Assume fraction f of paths scatter perfectly forward, and b perfectly backward:

Volume rendering reduces to Kubelka-Munk theory.
Extinction coefficient is replaced with a new effective extinction coefficient:

Note: effective extinction depends on albedo - it now has a color.

Extinction coefficient can be precomputed per material; all the rest of the math is the same.



Multiple Scattering

Single scattering Multiple scattering

VO PT VO PT



Use in Unreal

Use to attenuate both direct and 
environment lighting

Can easily integrate against Lumen or 
Translucency Lighting Volume

Can use for simple shadowing

No Lumen Sample



Use in Unreal

Use to attenuate both direct and 
environment lighting

Can easily integrate against Lumen or 
Translucency Lighting Volume

Can use for simple shadowing

Lumen Sample



Pop Suppression

Distance from camera

Fi
lte

r W
id

th

Ideal filter width

Voxel data available



Pop Suppression

Distance from camera

Fi
lte

r W
id

th

Naïve sampling strategy

Voxel data available



Pop Suppression

Distance from camera

Fi
lte

r W
id

th
Voxel data available



Pop Suppression

Distance from camera

Fi
lte

r W
id

th
Voxel data available

Pop Bounds

Pop-suppressing filter strategy



Pop Suppression

Distance from camera

Fi
lte

r W
id

th
Voxel data available

Pop Bounds

Pop-suppressing filter strategy 
With transition region



Pop Suppression



Performance Results

64x64x32x3 – 1ms sim 128x128x64x3 – 2.5ms sim

(gpu, on a console platform)



Limitations

Memory use with dense allocation

Sniper rifles

IOP collision is ‘eh’

Gameplay / Multiplayer



Future Direction

Ship a game!
Perfecting VO

Better explosive effects / compressible simulation

How do we do this in a fully path traced world?



Thank you!

Special thanks:
Gigi – Alan Wolfe https://github.com/electronicarts/gigi

Partner Teams
Morten Vassvik

Learning Resources:
Rook Bridson – Fluid Simulation for Computer Graphics
WL Briggs et al. – A Multigrid Tutorial
Martin and Cartwright – Solving Poisson’s Equation using Adaptive Mesh Refinement

https://github.com/electronicarts/gigi

	Folie 1: Hi There
	Folie 2: Infinite Content
	Folie 3: Vaporwave Why?
	Folie 4: Fluid Simulation Basics
	Folie 5: Fluid Dynamics Sims
	Folie 6: Semi-Lagrangian Advection
	Folie 7: Semi-Lagrangian Advection
	Folie 8: Semi-Lagrangian Advection
	Folie 9: Semi-Lagrangian Advection
	Folie 10: CFL Numbers
	Folie 11: Advection Quality
	Folie 12: Projection
	Folie 13: Projection
	Folie 14: Fluid Sim Drawbacks
	Folie 15: Alternative approaches
	Folie 16: Our Simulation
	Folie 17: What we propose
	Folie 18: Mixed Resolution Simulation
	Folie 19: Nested Grids
	Folie 20: Clipmap Nested Grids
	Folie 21: Clipmap Nested Grids
	Folie 22: Nested Grid Implementation
	Folie 23: Advection
	Folie 24: Advection
	Folie 25: Advection
	Folie 26: Advection
	Folie 27: Rebasing
	Folie 28: Projection
	Folie 29: Projection
	Folie 30: Clipmap Multigrid Projection
	Folie 31: Clipmap Multigrid Projection
	Folie 32: Clipmap Multigrid Projection
	Folie 33: Clipmap Multigrid Projection
	Folie 34: Control
	Folie 35: Niagara Interaction
	Folie 36: Rendering
	Folie 37: Unreal’s Renderer
	Folie 38: Primary Traversal
	Folie 39: Lighting
	Folie 40: Lighting
	Folie 41: Lighting
	Folie 42: Volumetric Occlusion
	Folie 43: Single scattering
	Folie 44: VO Single scattering from environment
	Folie 45: Single scattering from environment
	Folie 46
	Folie 47: Phase Function
	Folie 48: Multiple scattering
	Folie 49: Multiple Scattering
	Folie 50: Use in Unreal
	Folie 51: Use in Unreal
	Folie 52: Pop Suppression
	Folie 53: Pop Suppression
	Folie 54: Pop Suppression
	Folie 55: Pop Suppression
	Folie 56: Pop Suppression
	Folie 57: Pop Suppression
	Folie 58: Performance Results
	Folie 59: Limitations
	Folie 60: Future Direction
	Folie 61: Thank you!

