
1

VARIABLE-RATE COMPUTE SHADERS

in DOOM: The Dark Ages

Martin Fuller
Principal Engineer

Xbox Advanced Technology Group

Philip Hammer
Principal Engine Programmer

id Software

22

Motivation

60 FPS on Xbox Series X|S, PlayStation 5 +
PC, recently also ROG Xbox Ally X

Much more complexity, more content, more
advanced rendering features

See other talks!

Compute expensive pixels only if really
necessary

33

Recap: VRS in DOOM Eternal

idTech7 uses Clustered Forward+ rendering
Hardware VRS on Xbox Series X|S (2022)
(unsupported on base PS5 and many PC GPUs)

Added with the Gen9 update along with Raytraced reflections,
120 Hz mode, etc

Rasterized Pass
(VRS enabled)

Rasterized Pass

Build Clusters
(Lights, Decals)

Opaque Pass
(Forward+)

Depth Prepass Deferred PassesGPU Triangle
Culling

...Transp. Pass
(Forward+)

idTech7

Compute VRS

44

Recap: VRS in DOOM Eternal

VRS is a great fit for forward rendering

Lots of expensive pixels avoided in DOOM Eternal

Watch Variable Rate Shading Update Xbox Series Consoles

https://www.youtube.com/watch?v=pPyN9r5QNbs

55

Recap: idTech7 vs. idTech8 pipeline

Rasterized Pass
(VRS enabled)

Compute Pass
(new in idTech8)

Rasterized Pass

Build Clusters
(Lights, Decals)

Opaque Pass
(Deferred)

Visibility Pass Deferred PassesGPU Gather GPU Triangle
Culling

...Transp. Pass
(Forward+)

idTech8

Deferred
Texturing

Tiled G-Buffer
Update

Tiled Deferred
Lighting

Compute
VRS

Build Clusters
(Lights, Decals)

Opaque Pass
(Forward+)

Depth Prepass Deferred PassesGPU Triangle
Culling

...Transp. Pass
(Forward+)

idTech7

Compute VRS

66

Recap: idTech8 Deferred Rendering

Visibility Buffers + Deferred everything
Other DOOM:TDA talk today:
Visibility Buffer And Deferred Rendering in
DOOM: The Dark Ages

Perf gain by minimizing raster work
Minimize Helper Pixel waste

Move heavy duty work to compute

Remaining raster work remained
lightweight
(Depth/Visibility Buffer, Shadows)

77

Recap: idTech8 Rendering vs. (hardware) VRS

Great results at first

But (hardware) VRS doesn‘t
work with compute

Forward+ 17.5 ms

Visibility Buffer 14.8 ms

Forward+
(with VRS)

14.5 ms

Visibility Buffer
(with VRS)

14.6 ms

Now what?

88

Variable-Rate Compute Shaders

VRCS to the rescue!

Initial implementation within 2
weeks from Martin‘s prior work

Proof-of-Concept !=
Production Ready

Direct collab at the id Frankfurt
office

99

Variable-Rate Compute Shaders

Goal = Save performance!
(by retiring compute waves early)

Unique calculations only for a subset of pixels

Copy the result to the neighbor pixels

Apply to heavy-lifting compute passes replacing opaque
forward rendering

1010

Variable-Rate Compute Shader Passes

Deferred Texturing (material evaluation)

Deferred G-Buffer Update (decals, rain, blood)

Deferred Lighting (lighting, shadows)

(initially) Deferred Composite (GI, Fog, Reflections, etc)

Rasterized Pass
(VRS enabled)

Compute Pass
(new in idTech8)

Rasterized Pass Compute Pass
(VRCS enabled)

Build Clusters
(Lights, Decals)

Opaque Pass
(Deferred)

Visibility Pass Deferred PassesGPU Gather Triangle Culling ...Transp. Pass
(Forward+)

idTech8

Deferred
Texturing

Tiled G-Buffer
Update

Tiled Deferred
Lighting

Compute
VRS

1111

VRCS - Shading Rate Image

2x2 Shading Rate Image
(SRI) 8bpp UINT

Analyzing luma gradients
(think Sobel filter)

Assign shading rates to
each 2x2 tile

1x1 2x1 1x2 2x2

8x8 SRI for HW VRS (on AMD) 2x2 SRI for VRCS (any IHV)

Scene Luminance

1212

Shading Rate + Coverage -> VRCS Buffer

Primary vs. Duplicate Pixels

Shading Rate + Coverage
determines uniquely calculated
pixels

Primary Pixel result gets copied

1x1

2x1

1x2

2x2 Primary Pixel

Duplicate Pixel

1313

VRCS 16x16 Tile Debug

Tile entirely 1x1 rate
(4 primary pixels per 2x2)

Primary pixel

Duplicate pixel

Tile entirely 2x2 rate
(1 primary, 3 duplicates per 2x2)

1414

VRCS Compute Scheduling

GPU work scheduling

No gain when mixing primaries and
duplicates in the same wave

Must compute primary pixels together
in waves

Goal: Uniform early-out for one or more
waves

wave 0 wave 1

wave 0 wave 1

1515

VRCS: Coordinate Remapping

Segment screen into 16x16 pixel tiles

8x wave32 with 8x4 threads each

All threads tile local => scalar light load

Store primary pixel count per tile

Store per pixel payload:

8 bits tile-relative XY offset (4 bits per dim)

3 bits copy commands (vert, horz, diag)

wave 0

wave 1

wave 2

wave 3

wave 4

wave 5

wave 6

wave 7

1616

VRCS: Coordinate Remapping

Tile-relative offset to remap the pixel coordinate

Not moving any memory, just remapping threads

00 02 13 20

22 23 31 32

33 01 03 10

11 12 21 30

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

2x2
(1 prim)

2x1
(2 prim)

1x2
(2 prim)

1x1
(4 prim)

2x2 SRI Tiles Primaries / Duplicates Dispatch: wave-packed pixels

1717

VRCS: Wave Packing Example

Example 16x16 tile:

132 primary pixels

124 duplicate pixels

wave 0

wave 1

wave 2

wave 3

wave 4

wave 5

wave 6

wave 7

Every wave processes both primary and
duplicate pixels

-> Full cost for all 8 waves

1818

VRCS: Wave Packing Example

Example 16x16 tile:

132 primary pixels

124 duplicate pixels

wave 0

wave 1

wave 2

wave 3

wave 4

wave 5

wave 6

wave 7

4 full waves of primary pixels

 -> Full cost for shader execution

1 partial wave (4 primary pixels)

 -> still full cost

3 full waves of duplicate pixels

 -> very cheap (uniform early-out)

1919

VRCS: Optimization

No storage need for wave 7

Need to save at least 1 wave to realize a
benefit

Otherwise execute whole tile 1x1 rate

Storage per tile = 256–32 = 224 entries

wave 0

wave 1

wave 2

wave 3

wave 4

wave 5

wave 6

2020

VRCS: Implementation – Simple!

VRCSPrefix: Remap the pixel
location and retrieve vrcsData

VRCSPostFix: store outputValue,
potentially copy to duplicate pixel

2121

VRCS: Implementation

Compute tile index

Evaluate early-out conditions

Remap pixel coords

2222

VRCS: Implementation

Store primary pixel

Check copy bits & store to copy location(s)

2323

VRCS: Dispatch (Tiled Data)

Typical scenario: fullscreen dispatch
Dispatch all threadgroups needed

Early out for duplicate pixels

max. 1 partial wave per 16x16 tile (on average 1/8 of waves)

e.g. 14400/115200 partial waves @ 1440p

Nitpick - not 'quite' correct

Sometimes (numPrimaryPixels % 32) == 0

Including tiles flagged 1x1 or 2x2
Nitpick - n STILL

2424

VRCS: Dispatch (Pixel Commands)

But we can do better ..

Deferred Texturing processes a single list of primary pixels („Pixel Commands“)

Only atomic-add primary pixels + copy flags

no early-out waves, no tile flags

= max. 1 partial wave per screen!

Dispatch: primary pixel list + copy flags

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33 00 02 13 20 22 23 31 32 33

2x2 1x2

2x1 2x2

2x2 SRI Tiles Primaries / Duplicates

2525

VRCS: Dispatch (The Future)

Observation: VRCS on Compact Pixel List turned out to be very efficient

Max. 1 partial wave

Duplicate pixel threads are not launched at all

Idea: Compact Pixel Lists also for other deferred stages (Lighting, G-Buffer, etc)

Need more memory

Need to solve uniform cluster reads (tile system improves uniform access to lights)

Idea+: Run Texturing, Lighting, G-Buffer update in one shader

Similar shader setup like F+, but in compute

Actually tried this, but ran out of time

VGPR issues, difficulties with very long programs

26

Fighting the Good Fight
(Image Quality)
5 weeks to code lock, Rip and Tear until it's done!

2727

Pixel Offset Problem

Hardware VRS invokes the PS at the center of the ‘coarse pixel’
Covered pixels receive copies (= PS invocation location)

VRCS shades first covered pixel, other pixels receive copies

Problem – VRCS introduces a 'half pixel offset'

2x1 1x2 2x2

2x1 1x2 2x2

2828

Modify Shaders to HW VRS behaviour?

Problem could be corrected by sampling with an additional
halfPixelOffset.xy, but

Requires modification to every shader using VRCS

Requires 2x extra long-life vector registers and extra math

Not needed if running 1x1 rate...

Little enthusiasm*

2929

Rotating Pixels

Per frame rotate which pixels are primary & converge?
Improvement for 1x2 and 2x1 rate, flip the checkerboard

2x2 rate requires 4 frames to converge = 15hz = too slow
Instead, alternate primary pixel between top left and bottom right

+ping pong sequence for 3 covered pixels

Improvement != fix

3030

Activision's Deblocker - Michal Drobot Siggraph 2020

Execute a thread per entry in
the VRCS coordinate buffer

2x1 – average two pixels horizontally

1x2 – average two pixels vertically

2x2 – average 4 pixels diagonally

Run before transparency
Solves half pixel offset

“Software-based Variable Rate Shading in Call of Duty: Modern Warfare.”

3131

Results: XSS – Deblocker cost 97us @ 736p

Very little 1x1 rate on XSS at low resolutions, mostly half rate or 2x2

Raw Deblocked Final

3232

Coverage?

We let the deblock spill over
triangle edges

Incorrect for surface silhouette...

Did try respecting coverage:
Slow...

Fixed silhouette, but interior problem

Raw Deblocked

3333

Coverage?

We let the deblock spill over
triangle edges

Incorrect for surface silhouette...

But CORRECT for interior surfaces!

e.g. deblock spec highlight across
triangle edge

3434

Coverage? Raw Deblocked Final

TAA fixes our sins!
Or at least this sin...

Proper fix would be
dissimilar depth

But cost, shader B/W limited

And time, ~5 weeks to ship,
wasn't a priority...

3535

Squeezing in Just One More Sin!

The Deblocker uses the same Input & Output UAV...
Shader is bandwidth limited

(also writes Luma for SRI generation)

Same input & output buffer = big optimisation

But
Race condition - pixels changing value (output) which have yet to

be used as inputs

Imperceptible in practice

3636

Activision's Deblocker Worked Extremely Well!

Cheap!

Fixed half pixel offset issue
No mod to existing shaders

Allowed us to be WAY more
aggressive on shading
rate!

Especially on XSS

Especially at low DRS res

Digital Foundry called
out some blockiness

Strange, far distance only?!?

Oh... we accidentally turned off
the deblocker for lightly fogged
screen tiles....

Quickly fixed in post launch patch

(The idTech8 Magnifying Glass!)

3737

Noise is from Hell!

idTech8 uses per-frame rotating blue-noise for 'Fog' and
Shadow Cascade blending

Single pixel 'fizz' becomes objectionable at Macro scale (2x2 rate)
Randomness unpredictable by VRS/VRCS

TAA helps with single pxiel 'fizz', but not blown up to Macro scale

Key observation - half rates are 'ok'
Added a LOT of 'extra half rate shading' to VRCS shading rate
image (but not VRS image)

Compute shading rate as normal

If shading rate is 2x2, compute again, with reduced tolerances

But this time 1x1 is disallowed, 2x1, 1x2 or 2x2 only

3838

Extra Half Rate Shading – But The Cost!

XSX 1440p
Normal Half Rate 17.4ms

Extra Half rate 18.0ms

Also helps with SSR
Particularly sensitive

to variation in
normal direction

39

Clawing Back
Performance
Because fixing the noise issue cost a lot of performance

4040

Foveated Shading Rate linked to DRS (VRS & VRCS)

XSX 1440p

Shading Rate linearly
scales with DRS whole
resolution range

Foveated reduction kicks
in at <= 75% res

VRCS + DRS = large
reduction in number of
processed pixels! XSX 1170p

4141

Foveated Shading Rate linked to DRS (VRS & VRCS)

Q. What is VRCS worth?

A. Depends on resolution + we added a VRCS quality overshoot
Above 85% resolution, increase VRCS quality above what we considered needed

for image quality, because why not?

Sometimes VRCS barely a win at max res, ok fine!

XSX 1440p XSX 1020pXSX 1336p

4242

Best Wins are Not Necessarily at Min or Max Resolution

XSX 1440p

VRCS on 18.55ms

VRCS off 19.70ms

Saved 1150us

XSX 1020p

VRCS on 10.00ms

VRCS off 10.93ms

Saved 930us

XSX 1336p

VRCS on 15.54ms

VRCS off 17.57ms

Saved 2030us

Full rate triangle edges limit win

Lowering resolution always
provides diminishing returns

No quality overshoot

No foveated shading rate
reduction yet

Quality overshoot active

4343

Transparencies Can Reduce Solid Shading Rate

Luma stored twice
before and after
transparent (R8G8)
VRCS shading rate
computed twice

VRS uses after
transparent luma for
shading rate

VRCS uses the lowest of
either shading rate

Transparents can reduce
shading rate on
solid but cannot
increase it

= Profit!

(Particularly in combat)

VRS SRI VRCS SRI VRCS BuffersFinal

4444

Remove Overshading of ~co-planar Triangle Edges

4545

Zoomed in, in-case of Bad Projector Quality!

4646

Remove Overshading of ~Co-planar Triangle Edges

Dot product face normals and compare
depth

Allow shared shading if close (and low rate)

Worked great except...

Had to Reconstruct Face Normal
(Terrible 'knocked up in an hour' algorithm)

Load triangle ID + depth to 8x8 groupshared

Search for 3x3 for three identical triangle IDs

Cannot be in a straight line

Build face normal from 3x positions.xy+depth

Zero normal if not found
XSX 1440p
Normal VRCS time 18.10ms

Overshade reduced 17.95ms

4747

Other Performance Wins

Increased Shading Rate tolerance in 'Safe Area'
Border screen tiles have slightly lower shading rate = v.small win

Not forced 2x2, because noise...

VRCS Tile Flags: (stored or derived from tile count of primary
pixels)

1x1 – process every pixel, pixel.xy = SV_DispatchThreadID

2x2 – tile is entirely 2x2, pixel.xy computed, not loaded from buffer

Sky – tile is entirely sky, early out if shader doesn't want to process sky
(Sky is not necessarily 2x2)

Fog – tile is fogged, composite shader runs 1x1 rate, other shaders run
with stored pixel.xy (unless additionally flagged 1x1 or 2x2)

4848

Fog Tile Flag Optimisation

Fog Volumes are 3D

Building VRCS buffers runs 1 thread per 2x2 pixels
Fog volume sampled once per thread = half res

Still expensive though....

Post launch ended up dropping VRCS for the composite pass – which
also calculates fog

Meh,

But - reclaim expense of calculating fog tile flag

49

Results
Where did we land?

5050

Perf Numbers

Case with good gains

Case with average gains

5151

Worst VRCS Gains

Always foliage!

1336p XSX

600us win

85% res

Worst scene I found

(non-exhaustive sampling, but DF called out the same area)

5252

VRCS Performance Figures

Xbox Series X|S and Playstation5
Huge gains in VRCS enabled passes

Frequently 33% saving for deferred texturing and lighting

Typically, 1-2ms overall GPU frame perf gain
Depends on content and DRS scale

Best gains at 85% resolution, by design
Worst gains in foliage heavy areas

ROG Xbox Ally X
Similar gains without costly upscaler (simple TAA) as on Xbox/PS5
No great VRCS win with FSR upscaling

Cost of FSR pushes down internal resolution
VRCS win dependent on finding duplicate pixels

Overshading of triangle edges problem becomes much worse at low resolutions

53

Future Potential
Buckle up, there is a lot!

5454

1. VRCS to Accelerate Ray Tracing

Use VRCS to fire fewer rays originating in the view frustum
Reflections

AO

Shadow rays

Screen space probes

Totally viable, potentially MASSIVE saving
As normal - fire rays from primary pixel, copy results

Or - reduced ray count per pixel
Non-binary use of VRCS!

reducedNumRaysPerPixel = numRaysPerPixel / (1 + numPixelCopies);

(for GPUs that can fire multiple rays per pixel...)

5555

2. Reduce Internal Shading of Triangle Edges

Reconstructing face normal from adjacent samples
‘worked’

Requires finding three samples from the same triangle +
precision issues

Not great, not terrible

Improvements:
Store face normal with visibility buffer?

OctEncodeLowPrecPosZOnly(cross(ddx(SV_Pos), ddy(SV_Pos)));

Or output with barycentric buffer?
Pass accesses triangle data – visible triangles only
Tangent frame normal?

We can do even better!

5656

Unwanted Extra Shading on 'Internal Edges'

E.g.

1. Face

2. Fingers

3. Cloak

XSX 1440p

Regular 13.9ms

VRCS 12.2ms

5757

Not Co-planar Triangles, but 'Same Surface' Triangles

5858

Solution : Stop using TriangleID !

Triangles are an artificial representation of the true geometry of a
surface, we actually care about:

1. Increase quality on surface silhouette (where MSAA wins)
2. Surface is continuous (depth check)
3. Shading detail/lighting etc.. (shading rate image)

E.g.
shareShading = lowRate && zClose && (surfID == adjSurfID)

Would significantly reduce unnecessary additional shading
Foliage, cloth, skin, floors, walls, any smooth surface!
Particularly helpful at low resolution / detailed meshes / small triangle sizes

Tooling problem, how to assign surfaceID?

You could use VRCS without a Visibility Buffer!
G-buffer SurfaceID

5959

3. VRCS on Half Res?

SSDO is half res, and expensive (~1.3ms)
Half res shading rate image

Additional output from current shader

Half res VRCS coordinate buffer
Simplified VRCS buffer gen shader

Requires half res visibility buffer or custom sample

Hide cost on async compute ofc!

No Deblocker?
Result is blurred anyway

Would VRCS be a win?
Guestimate net 100-200us saving with triangleID's

Guestimate net 250-300us saving with surfaceID's

(Triangles a lot smaller at half res! Surfaces still relatively large)

6060

4. Foliage: Reduce/Remove Extra Half Rate

XSX 1440p
Extra Half rate 17.2ms

No extra Half Rate 16.5ms

How much extra half rate on Foliage?
1. Less? Relax shading rate tolerance

2. None? :-)

Fullscreen No Extra Half RateWith Extra Half Rate

6161

5. Sending Noise back to Hell!

Potential solutions:
Produce a screen space mask of where noise is being

applied (does not need to be binary)

e.g. where shadow cascades are transitioning
Next frame - boost half rate shading only on masked areas

Disable extra half rate on certain materials
e.g. foliage

Disable extra half rate when the camera is moving fast
Foveated?
(If only we had captured motion blur in the Shading Rate Image)

(Or remove use of noise..? #JustSaying...)

6262

6. If We Can't Fix the Noise Issue?

Observation – noise added in lighting pass, not texturing

Per-pass SRI and VRCS buffers?
Deferred texturing – no half rate boost
Deferred lighting – half rate boost

Problem?
Reflections particularly sensitive to normal direction
SSR runs thread per pixel - no VRCS

But it does use duplicate g-buffer normals
Not great, not terrible

Solution:
Output normal g-buffer thread per pixel – no VRCS
Run VRCS for the rest of the shader, waves retire
Only for screen tiles with reflective materials - re-project from last frame

6363

7. Post Process Blurs

Shading Rate Image doesn't know about:
DOF, Motion Blur, Bloom etc..

(Major VRS win on other titles => increased internal resolution)

Why?
idTech8 overlaps frames => GREAT optimisation!

But... post blurs not reliably done by the time Shading Rate Image
required...

Solution?
Coarse DOF calculation in Shading Rate generation shader?

Small VALU cost => but only when DOF is turned up high = profit!

6464

VRCS Conclusions

1-2ms saving is huge for a 60hz title!
Increased internal resolution on PS5/XSX/XSS

Required on XSS to hit frame time+resolution targets

Worked well on ROG Xbox Ally X only with a cheap upscalar (same as console)

Best wins require a reasonable resolution

Deblocking is essential

We have only scratched the surface!
Apply to RT and half resolution passes

Improvements

Pixel selection algorithm - surfaces not triangles

Better fix for the noise issue - reduce half rate shading boost

Foliage - remove internal triangle edges and remove/reduce half rate boost

65

Thank You For
Listening!

We are Happy to Take Questions!

Acknowledgements

Thanks to the amazing team at idTech,
especially for being open to big changes
very late in the day!

idTech engineers:

Allen Bogue, Billy Khan, Bogdan Coroi,
Carson Fee, Dominik Lazarek, Ian Malerich,
John Roberts, Jean Geffroy, Johan
Donderwinkel, Mel-Frederic Fidorra, Oliver
Fallows, Dr. Peeter Parna, Philip Hammer,
Regan Carver, Seth Hawkins, Stefan
Pientka, Thorsten Lange, Tiago Sousa and
Yixin Wang

id Software leadership (Marty Stratton,
Hugo Martin)

Everyone else at id Software, ZeniMax
and Xbox

6666

References

“Variable Rate Compute Shaders - Halving Deferred Lighting Time”, Martin Fuller. Microsoft Game Dev YouTube
Channel, 2022, https://www.youtube.com/watch?v=Sswuj7BFjGo

“Variable Rate Shading Update Xbox Series X|S”, Martin Fuller, Philip Hammer, Christopher Wallis. Microsoft Game Dev
YouTube Channel, 2022, https://www.youtube.com/watch?v=pPyN9r5QNbs

“Variable Rate Shading, A Deep Dive”, Martin Fuller. GDC 2019. https://www.youtube.com/watch?v=2vKnKba0wxk.

“Software-based Variable Rate Shading in Call of Duty: Modern Warfare”, Michal Drobot. SIGGRAPH 2020.
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-
war

“Rendering the Hellscape of DOOM Eternal” Jean Geffroy, Axel Gneiting, and Yixing Wang. SIGGRAPH 2020.
https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf

“Visibility Buffer and Deferred Rendering in DOOM: The Dark Ages”, Philip Hammer and Dominik Lazarek. Graphics
Programmer Conference 2025

https://www.youtube.com/watch?v=Sswuj7BFjGo
https://www.youtube.com/watch?v=pPyN9r5QNbs
https://www.youtube.com/watch?v=2vKnKba0wxk
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-basedvariable-rate-shading-in-call-of-duty--modern-war
https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf

67

Bonus Slides

6868

Results: XSX – Deblocker cost 119us @ 1320p

Raw Deblocked Final

69

Future Potential
Buckle up, there's even more!

7070

8. Reduce Single Buffer Coordinate Count

Build single compact VRCS coord
buffer at the same time as tile
relative VRCS coord buffer

 Tile relative coord buffer only stores
max 224 entries (256-32) per 16x16
tile

Otherwise tile based system is not saving
a wave, process all 256 pixels

(Yellow tiles in debug view)

Leads to unwanted additional
processing when executing single list
per screen

Foliage heavy scenes generated
the most full rate tiles, though

that could be improved

7171

Additional Minor Perf Wins Available

Utilise 21 spare bits for linearZ
Tile relative coords have 21b free – enough for unorm linearZ (near plane to
far plane)
Reading coord anyway, no point also reading depth and linearizing?

VRCS buffer of tile count + tile flags is 32b
R8G8_UINT texture would be enough, 8b count | 8 flags
RAM saving + bonus saving on bitwise OPs

(yes, we are that obsessed)

Optimise SRI and VRCS coordinate gen shaders (didn't get time!)
Removing face normal reconstruction hack + fog flag will help a lot

Read smaller mip level for primary pixels with duplicates
HW VRS does this automatically, VRCS does not
Doesn't need sample divergence, Deferred Texturing can tweak length of
gradients

	Folie 1
	Folie 2: Motivation
	Folie 3: Recap: VRS in DOOM Eternal
	Folie 4: Recap: VRS in DOOM Eternal
	Folie 5: Recap: idTech7 vs. idTech8 pipeline
	Folie 6: Recap: idTech8 Deferred Rendering
	Folie 7: Recap: idTech8 Rendering vs. (hardware) VRS
	Folie 8: Variable-Rate Compute Shaders
	Folie 9: Variable-Rate Compute Shaders
	Folie 10: Variable-Rate Compute Shader Passes
	Folie 11: VRCS - Shading Rate Image
	Folie 12: Shading Rate + Coverage -> VRCS Buffer
	Folie 13: VRCS 16x16 Tile Debug
	Folie 14: VRCS Compute Scheduling
	Folie 15: VRCS: Coordinate Remapping
	Folie 16: VRCS: Coordinate Remapping
	Folie 17: VRCS: Wave Packing Example
	Folie 18: VRCS: Wave Packing Example
	Folie 19: VRCS: Optimization
	Folie 20: VRCS: Implementation – Simple!
	Folie 21: VRCS: Implementation
	Folie 22: VRCS: Implementation
	Folie 23: VRCS: Dispatch (Tiled Data)
	Folie 24: VRCS: Dispatch (Pixel Commands)
	Folie 25: VRCS: Dispatch (The Future)
	Folie 26: Fighting the Good Fight (Image Quality)
	Folie 27: Pixel Offset Problem
	Folie 28: Modify Shaders to HW VRS behaviour?
	Folie 29: Rotating Pixels
	Folie 30: Activision's Deblocker - Michal Drobot Siggraph 2020
	Folie 31: Results: XSS – Deblocker cost 97us @ 736p
	Folie 32: Coverage?
	Folie 33: Coverage?
	Folie 34: Coverage?
	Folie 35: Squeezing in Just One More Sin!
	Folie 36: Activision's Deblocker Worked Extremely Well!
	Folie 37: Noise is from Hell!
	Folie 38: Extra Half Rate Shading – But The Cost!
	Folie 39: Clawing Back Performance
	Folie 40: Foveated Shading Rate linked to DRS (VRS & VRCS)
	Folie 41: Foveated Shading Rate linked to DRS (VRS & VRCS)
	Folie 42: Best Wins are Not Necessarily at Min or Max Resolution
	Folie 43: Transparencies Can Reduce Solid Shading Rate
	Folie 44: Remove Overshading of ~co-planar Triangle Edges
	Folie 45: Zoomed in, in-case of Bad Projector Quality!
	Folie 46: Remove Overshading of ~Co-planar Triangle Edges
	Folie 47: Other Performance Wins
	Folie 48: Fog Tile Flag Optimisation
	Folie 49: Results
	Folie 50: Perf Numbers
	Folie 51: Worst VRCS Gains
	Folie 52: VRCS Performance Figures
	Folie 53: Future Potential
	Folie 54: VRCS to Accelerate Ray Tracing
	Folie 55: 2. Reduce Internal Shading of Triangle Edges
	Folie 56: Unwanted Extra Shading on 'Internal Edges'
	Folie 57: Not Co-planar Triangles, but 'Same Surface' Triangles
	Folie 58: Solution : Stop using TriangleID !
	Folie 59: 3. VRCS on Half Res?
	Folie 60: 4. Foliage: Reduce/Remove Extra Half Rate
	Folie 61: 5. Sending Noise back to Hell!
	Folie 62: 6. If We Can't Fix the Noise Issue?
	Folie 63: 7. Post Process Blurs
	Folie 64: VRCS Conclusions
	Folie 65: Thank You For Listening!
	Folie 66: References
	Folie 67: Bonus Slides
	Folie 68: Results: XSX – Deblocker cost 119us @ 1320p
	Folie 69: Future Potential
	Folie 70: 8. Reduce Single Buffer Coordinate Count
	Folie 71: Additional Minor Perf Wins Available

