Principal Engine Programmer

Principal Engine Programmer

id PN

TecHs DDARKAGES

) Graphics Programming Conference, November 18-20, Breda 202 5

@ Graphics Programming Conference, November 18-20, Breda 2025

d &

LEVEL| SCORE : L e gl N\ 20 gy 74 ok = /

I 300

E’ Graphics Programming Conference, November 18-20, Breda

« Higher-fidelity geometry and material layering
« “More of everything”: Triangles, NPCs, Map-sizes, -
« 60 FPS + low latency across all targets

puoy

TECHS DARK AGES

@ Graphics Programming Conference, November 18-20, Breda

« ~8 Months before ship date

« Main content and design done

« Nowhere near our performance targets

« Optimizations desperately needed

« Engine department entered optimization phase across the board

« Some of us focused on opaque geometry rendering

_f _OPAQUI
Static Opague Models Bynamic Opaque Models
DrawsurfacesIndirect DrawsurfacesIndirect

T T [Executelndirect I [Executelndirect [Executels ||
Toverall rect Complex {no shmem) (indirect | [Overall overall rect Complex {no shmem) (indirect count, m: |[Overall

‘? Graphics Programming Conference, November 18-20, Breda

d &

2025

id &

« Opaque geometry rendering contributes to ~40% of total frametime
« Where do we lose performance?

Observations:

« Opaque rendering pipeline: Clustered Forward+
paq g pip "'7 \,-
« Two full geometry-passes needed ,

« Complex texturing & lighting shader
« Added features (POM, Material-blending,---) o .
- Large code-size, high VGPR count e e ()4 S

« Main slowdowns on views with high triangle density

@ Graphics Programming Conference, November 18-20, Breda 202 5

id &

« Profiling showed: Very bad quad utilization efficiency
« What is quad utilization anyway?
« Let's look at a quick example of a rasterized triangle somewhere on screen

HEEREDTIE
. Active threads ‘.
EEEFENEE
Helper threads
W e
EEEEN NN
HEEENAEE
HEENENEE

14 active threads + 18 helper threads = 32 pixel shader threads overall
Quad utilization: 14 active / 32 overall = 43% of threads ,utilized”

‘? Graphics Programming Conference, November 18-20, Breda 202 5

« Quad utilization efficiency becomes worse with smaller triangles
(at constant resolution)

14 active / 32 overall = 43% utilization 2 active / 8 overall = 25% utilization

8
? Graphics Programming Conference, November 18-20, Breda 202 5

How to deal with bad quad utilization efficiency?
« (Can’t avoid quad-shading in HW rasterization
« Software rasterization for sufficiently small triangles? -> Out of scope
« Limit impact of helper-thread overhead
« Make depth pass the only rasterized geometry pass
« Will suffer from helper-threads, but cheap shader logic

« Expensive texturing & lighting logic: Avoid expensive helper-thread overhead
(e.g. offload to compute shader)

? Graphics Programming Conference, November 18-20, Breda 2025

Things to solve when Texturing & Lighting is done in compute:

« Need triangle-attributes per pixel (e.g. UVs, derivatives:-:-)

« Need to dispatch different compute shaders for different groups
of pixels (e.qg. different materials, -)

« No hardware-VRS usable anymore

While we're at it:

« Split texturing- & lighting into separate passes
« Lower VGPR count for each stage
« Easier for shader-compilers to optimize
« We had G-Buffer anyway:--

10
? Graphics Programming Conference, November 18-20, Breda 2025

id &

« ,Surfaces” are the smallest elements from models

that we render. Models

- Identifies a portion of the geometry + a material

Surfaces
(Mesh-part + Material)

« “Material”: Textures + Parameters — not shader

« Vertex Position + attributes available as large
buffer on GPU

« GPU-Driven model-gather & (triangle-)culling

« Material-Textures are ,bindless”

@ Graphics Programming Conference, November 18-20, Breda 202 5

« Generated during Depth Prepass early in frame
« Writing gl PrimitivelID in pixel shader
,Depth Prepass” - ,Visibility Pass”

Visibility Buffer (RG 32)
|0 3110 31|

1
Winding Order-

Triangle Index

. 64 bpp texture storing: InSgcher.
« Triangle index N W
(resolved to pre-culled index; relative to mesh) B b o M

« Surface/Instance index
« Flag: Winding order
« Flag: Uses HW-instancing?

Surface/Instance Inde z

@ Graphics Programming Conference, November 18-20, Breda 202 5

« Export more data during Visibility Pass?
 UV-Derivatives?
 Tangent Frame?

« Both required for texturing/lighting later on
Trivially available during Visibility Pass (HW rasterization with quad helper threads)

Let’s profile!
« Slim” Visibility Buffer @ 64 bpp (Triangle- & Surface Index)

« No measurable performance impact
« Still bottlenecked by vertex processing; Adding more pixel-exports ,free”.

« Fat” Visibility Buffer @ 128 bpp (,,Slim“ + UV-Derivatives + Tangent Frame)

« Performance impact measurable now
« Bottleneck becomes pixel-export bandwidth ®

173
? Graphics Programming Conference, November 18-20, Breda 2025

« Visibility buffer generated — now what?
« Need to derive draw-calls from it

« Lots of good references around

e.g. Horizon: Forbidden West (), Epic Games (
Eidos Dawn Engine ()

Two often-cited approaches:
 Quad-Dispatch
« Render (Fullscreen-) Quad per material.
LEarly-out” on pixels not matching material

« Compute Dispatch
« Build explicit lists of pixels per material
« Sort into GPU-Waves and dispatch over them

? Graphics Programming Conference, November 18-20, Breda 2025

id &

« How to efficiently ,early-out”? Discard() per pixel? = Too late! Wave already launched

« Idea [Doghramachii7]: Use a ,fake” depth buffer
Depth buffer contains material-IDs, primed in additional full-screen triangle pass

@ Graphics Programming Conference, November 18-20, Breda

For each unique material on screen:

Render quad over screenspace bounds of that material (depth test = GL_EQUAL)
« Vertex shader: Output matching ,fake depth” value as well

- Only pixels matching this material will get rasterized.

i
L

Ok, so how does it perform?

Forward+ Quad Dispatch

14.26 ms

(RTX 5080 @ 4k)

® This isn’t any improvement at all! Why?! SR
T = =

@ Graphics Programming Conference, November 18-20, Breda 202 5

Let’'s fire up NSIGHT and profile!

id &

Sync Q Waiting e

P Compute C Engine Activity ‘ Observe when the Sync Q is waiting on work completion at the Frontend stage. While a queue is waiting in this way. it will not issue any further commands to GPU engines.

New pixel shader work is stalled on waits on the FrontEnd stage

B ZCULL Input Pixels 0.4 u.n._—|_

2RO ot Pt o) oox 325167730 Still A LOT after coarse rasterization (Hi-2)
B ZROP EarlyZ Input Pixels 0.3 n.ﬂ.-_l_
[] rly | I 1 . .
L 0o o o e Most of the pixels only get culled during

Interpretation:

fine rasterization (Early-2)

« Hi-Z isn‘t very effective with the ,fake” depth buffer.
« Contains only material-Ids, not hierarchical at all - can appear random on screen
« Fine rasterization has too much work, becoming a bottleneck

E? Graphics Programming Conference, November 18-20, Breda 202 5

Let’s first review some opaque shader performance properties:

« Forward+: Each drawcall comes from a single surface
- Material- & Entity- constants are uniform across a whole pixel-shader wave
« Material-Textures are sampled uniformly across a wave
« Uniformity known at compile-time: Shader compiler can produce more optimal instructions.

« > Compute-Dispatch needs to maintain uniformity as best as possible
« Keep materials uniform per wave - Uniform texture- and buffer-reads

18
? Graphics Programming Conference, November 18-20, Breda 2025

« QOur approach loosely follows the ideas presented in

Core idea:
« Process Visibility Buffer in Tiles
« Write tile-local pixel-coordinates into large buffer

« Padded up to HW wave size - keeps material uniform within wave
« Sorted by shader, tile and material

Visibility Buffer

256 x 256 pixels per Tile
(8 x 8 pixels shown)

S
~.
~
~
~
~.
~.
~.
~
~
~.
~
~

Offset in buffer? GPU Hardware wave size
(e.g. 32 or 64)

But: How do we come up with the correct offset into the buffer?

‘? Graphics Programming Conference, November 18-20, Breda

id &

“PixelCommands” Buffer

N T e p—
oo > \—Y—/

......
........
.........
........
aa,

2025

id

Num pixels per Shader/Tile/Material

Sifammmn

"
HER 2
» Series of compute passes
« Counting pixels in Visibility Buffer

per shader, tile, mat
« Restricted to visible shaders, materials

Visible set registered during GPU

Gather/Culling

Visibility Buffer

Materials

Num pixels per Shader/Tile, per Shader

« Generate offsets using prefix sums
« Results:

« Number of pixels per shader and tile
(all materials)

C oo [
« Global offset per material

l “PixelCommands” Buffer
« Global offset per shader

(all tiles, materials — needed for CPU []!.._

dispatch)

20
@ Graphics Programming Conference, November 18-20, Breda 202 5

id &

« On CPU-Side: (Multi*-) indirect dispatch call for each Shader-pipeline

« Each dispatch launches all material-waves within a single tile

« In dispatched shader:
« Read offset into pixelCommandsBuffer at DispatchID* (encodes PSO- & tile-index)
« Read pixel-coordinates at pso and tile index + gl LocalInvocationID.x
« (Actual material inferred from Visibility Buffer (surface Index))

« *Multi-indirect dispatch only available on D3D12 (custom ID3D12CommandSignature)
« On other platforms: Have to emulate

« Group multiple (logical) dispatches within each Group in X-dimension

 Group Y-dimensions collects individual dispatches - gl LocalInvocationID.y ==

DispatchID
« Reduce overhead from larger Group-counts in X-dimension by splitting dispatches into
a series of power-of-two sized buckets

‘? Graphics Programming Conference, November 18-20, Breda 2 02 5

id &

« No actual shader-logic yet — but we can already debug!
« Investment in debugging visualizations / shader-printf / shader-asserts always a win
4T - E | T i

E’ Graphics Programming Conference, November 18-20, Breda 202 5

id &

« We can render random colors very efficiently now!

« Next up: Textures & Lighting

« All compute based now - need to manually compute vertex-attributes, UV-Derivatives, Tangent
Frame

« Performed in a dedicated compute pass running on async together with pixelCommand builds

« Could also do this inline in texturing/lighting shader, but increases VGPRs considerably

GPU Async 14

GPU Async 07

ProcessVisibilityBuffer{ 121.96 ps} AttributesInterpolation { 155.89 ps }
DeferredDispatchCot

GPU Main
1ics{10.40ms }
B_RE} MRB_SETUP_TILES_GPU{324.81 ps}
MRB_BUILD_LIGHT tileRasterResetBuc tileRas tileRasterCoarselndirect tileRast tileRasterIndirectArgsDecalsCompute { 134.74 ps} tileRasterl
lightGridRegister {

.‘? Graphics Programming Conference, November 18-20, Breda 2025

@ Graphics Programming Conference, November 18-20, Breda

Actual interpolation math nothing new (follows old software rasterizers such as | HeckerS5))
We interpolate & store:
« Barycentric coordinates (2x Float16)

« Packed Barycentric derivatives (DDX / DDY) + flags (winding order, tangent sign)
Derivatives clamped to]-2.0..2.0[to save one bit and store flags.

« Tangent Frame (4x Float16)

. . I
Barycentric Coordinates (RG 16F) _—

perycentiic Derivatives (RGBA 16UL) anentepoti) | NEsuesne oo | Nesneennenona) | NEsnesrenovll |

(Packed + Flags)

Front facin.g Normal sign Tangent sig.n Bitangent sign

-
Tangent frame: (RAEA o) W ormatox) [Eertd Nomnaty 1 | WerlaTengentx 1] [Eertd Tangsnts 1]

id &

TECHB

zoz;

id &

« Initial version: Compute dispatch w/ attribute interpolation as direct replacement for Forward+
(Texturing + Lighting combined)
« Using only the most basic features to compare performance w/ Forward+

« Early performance results look much more promising than quad dispatch
- We decided to continue with this direction!

Forward+ (ms) Quad Dispatch (ms) Compute Dispatch (ms)

*10.4 = 0.6 dispatch generation + 9.8 render w/ attribute interpolatior

- Caveat: Performance-wins vary with visible scene 7 A
(e.g. large triangles on ground: Not much win - but also not worse!) &

Forward+ (ms) Compute Dispatch (ms)

*::5; : o 4]ig 3 %
1 | SRRV o | [Rd N

? Graphics Programming Conference, November 18-20, Breda 2025

d ®©

shaderPipeline outside {

« Each shader-pipeline supporting deferred texturing gets a new hlsl_vp {
Compute‘Shader Stage } // Forward+ Vertex Shader
« Same logic as Forward+ pixel shader, but only blends materials MLt {
}
- Dispatched using the pixelCommands buffer and inidrect dispatch e sie (on 1 1)

args preared from Visibility Buffer earlier } // Deferred Texturing Compute Shader
}

« OQOutput to GBuffer

26
7 Graphics Programming Conference, November 18-20, Breda 02 5

« Pixel-command wave packing ensures that bindless texture indices are uniform

« However: Meshes/Entities can still be divergent:
Less optimal Mesh/Entity-cBuffer access patterns

« Results in higher VGPR count, less efficient compiled shader code

? Graphics Programming Conference, November 18-20, Breda 2 02 5

d ®©

Observation:
In most cases, all wave-pixels in fact come from the same mesh & entity

« Leverage with a simple trick:
Dispatch all waves in two permutations — divergent vs uniform data
« Check uniformity with subgroup ops - early out if assumption is violated
« Slightly better: Build two different dispatch commands from the start. Would avoid overhead

starting waves and earlying out

const bool dataIsUniform = subgroupAllEqual(meshDataHandle);
#if defined(SHADER_VERSION_UNIFORM_DATA)
if (dataIsUniform == false) {
// Uniform version but data is divergent, early out
// Pixels will be processed by the divergent version
return;

}

// Data is uniform, use subgroupBroadcastFirst() to let the shader compiler know

meshDataHandle = subgroupBroadcastFirst(meshDataHandle);
H#else
if (shaderHasUniformDataVersion && dataIsUniform) {
// Divergent version but data is uniform, early out
// Pixels will be processed by the uniform version
return;

) Graphics Programming Conference, November 18-20, Breda 202 5

id &

i
1 |ln |
) Y
N \ - y
& f
- 1 ~
/ g = - ~
F m oo, s T - ~
H 1o

. R)

DARK AGES [’ :’:‘-‘ . ¥ ’ ‘ . m - i 5 ‘ﬁBetheSda zem'.‘,’!ﬁi.(" @ 29
@ Graphics Programming Conference, November 18-20, Breda 2025

Current state: G-Buffer from our opague geometry — what's next?

Blend G-Buffer modifications
Geo Decals, Projective Decals, Wetness and Rain VFX, Triplanar Blood Layer

Compute Lighting
Final G-Buffer, only write-out 1 RT with final lighting
Same clusters and very similar shader code as F+

Option to compute combined or split into 2 phases

Split setup: 1 additional G-Buffer read, but less complex shaders
On most platforms a decent win
Only write touched G-Buffer channels

30
? Graphics Programming Conference, November 18-20, Breda 2025

A
il

._Ndmodificatio

VIR 172
” I

E’ Graphics Programming Conference, November 18-20, Breda

— ‘ i\‘ s J] &] lf]m!' ' | i
P6eo Decals Il < '

. il h

E’ Graphics Programming Conference, November 18-20, Breda

| E =
+Ge0 Decals
4 Projected Decals g

e

——— -’.‘

L e

z . .-."-" :“‘i* —
[3 L T ——
3 e |
%

@ Graphics Programming Conference, November 18-20, Breda

T a, .
+ Geo Decals - ;
& Projected Decals
+ Triplanar Dyn~am C Blood
i (raln/wetness ?g .,

@ Graphics Programming Conference, November 18-20, Breda 202 5

id &

Split uber-shaders into feature set permutations with varying complexity
-> Keep VGPR usage low

Select permutation based on classification tile mask

Segment screen into 32x32 pixel tiles e
Matches clustered bin tile size for lights/decals

Goal is to indirect-dispatch tailored
shaders for each tile

Split uber shaders into smaller subsets
Better wave occupancy (less VGPRSs)

No dispatch for unnecessary tiles
(avoids per-pixel checks)

@ Graphics Programming Conference, November 18-20, Breda 202 5

d ®©

Each tile stores 32-bit bitmask
ey : - — TC_FEATURE_OPAQUE Px01
Add feature bit if plxel touches the tile U RO PV I TC_FEATURE_BRDF_CLOTH eez
- T TC_FEATURE_BRDF_SKIN ox04
A feature can be BRDF type, ,hasDecal” etc. .

TC_FEATURE_DECALS 0x08
@X@3 0x03 | Ox00 | oxol

Build feature bitmask using scalarized atomicor
throughout the frame

uint featureBitmask = 0x0;
featureBitmask |= (hasSkinBRDF) ? (1 << TC_FEATURE_BRDF_SKIN) : 0x0;
featureBitmask |= (hasClothBDRF) ? (1 << TC_FEATURE_BRDF_CLOTH) : 0x@;

uint64 remaininglanes = subgroupBallot(true);
while (anyNotEqual(remaininglLanes, 0x0)) {
uint laneIndex = subgroupBallotFindLSB(remaininglLanes);

uint uniformIndex = subgroupBroadcast(bufferBaseldx, laneIndex);
uint64 equalMask = subgroupBallot(bufferBaseIdx == uniformIndex);
remaininglanes &= ~equalMask;

if (gl_subgroupInvocationID == laneIndex) {
atomicOr($tileClassificationPayloadBufferRW[index], featureBitmask);

}

) Graphics Programming Conference, November 18-20, Breda 202 5

id &

Tile features translate to specific compute workloads
Each workload is an indirect-dispatch call
Each tile is an indirect argument as part of the workload

Workload generation
Store tile count per workload
Store tile position per tile as 1D index

Workload dispatch
Reconstructed global 2d screen position in shader

TC_FEATURE_BRDF_CLOTH - ‘

TC_FEATURE_OPAQUE AND
TC_FEATURE_BRDF_SKIN OR - -
TC_FEATURE_DECALS

37
@ Graphics Programming Conference, November 18-20, Breda 202 5

id &

190m
@

D

a)[ﬂ G m“\

@ Graphics Programming Conference, November 18-20, Breda 202 5

zﬂ

_DROPSDRIES
DDLES

B N

SR x|
NS
- SUNCAU / . 2 . : :
P—— i /’ f)
B_=2 'S L 5! . , Tk

@ Graphics Programming Conference, November 18-20, Breda

e |

NN T T

EERTRR T e i I I v M LY SR o . e 3 SEEEET)P
1 hits): computetileclassificationgenindirectdispatchargs: 1. deferred lighting (only) update group stats
1 hits): computetileclassificationgenindirectdispatchargs: 1a. theoretical fullscreen threadgroups: 65280 (100%)
Trhite s computetilec1agsifiqgtiongenindirectdispatchargs: ib., actual dispatched threadgroups: 61792 (95%)
1 hits): computetileclassificationgenindirectdispatchargs: 1c. discarded threadgroups (not dispatched): 3488 (5%)
1 hits): computetileclassificationgenindirectdispatchargs: indirect dispatch DISPATCHWORKLOAD_DEFERRED_LIGHTINGONLY_ DEFAULT (RED): 24768 threadgroups (37.9%)
1 hits): computetileclassificationgenindirectdispatchargs: indirect dispatch DISPATCHWORKLOAD_ DEFERRED_LIGHTINGONLY_ FEATURESUBSETO (GREEN): 16416 threadgroups (25.1%)
1 hits): computetileclassificationgenindirectdispatchargs: indirect dispatch DISPATCHWORKLOAD DEFERRED LIGHTINGONLY FEATURESUBSET1 (BLUE): 20608 threadgroups (31.6%)
]%?;m
<
&
ill_
A [; e v
Deferred Lighting Workloads o RSl o el Y Lo
= SRR T s */j- o / ¢ , 3
Red: 122 VGPRs Bt) // AN
Features! 229377 \ / \
DOFARUE_DEFERRED v
o ® ENVWETNESS_DROFSDRIPS .
Gr‘een o 88 VGPRS ENVWETHESS_FUDDLES 1

SUNCAUSILICS ¥ ; 4

Blue: 78 VGPRs w4 4

P2 = % 4 i

.‘? Graphics Programming Conference, November 18-20, Breda 2025

N ST TN TN TN TN TN TN TN TN TN TN T

e e e e e e L i T T

hits
hits
hits
hits
hits
hits
hits
hits
hits
hits
hits
hits
hits
hits

Defer

‘? Graphics Programming Conference, November 18-20, Breda

deferred ghbuffer update group stats

theoretical fullscreen threadgroups: 65280 (100%)

actual dispatched threadgroups: 44256 (68%)

discarded threadgroups (not dispatched): 21024 (32%)
indirect dispatch DISPATCHWORKLOAD DEFERRED_GBUFFERUPDATE_DEFAULT
indirect dispatch DISPATCHWORKLOAD_DEFERRED_GBUFFERUPDATE_FEATURESUBSETO (GREEN):

(RED):

indirect dispatch DISPATCHWORKLOAD DEFERRED GBUFFERUPDATE FEATURESUBSET1 (BLUE):

deferred gbuffer update group stats

theoretical fullscreen threadgroups: 65280 (100%)

actual dispatched threadgroups: 44192 (68%)

discarded threadgroups (not dispatched): 21088 (32%)
indirect dispatch DISPATCHWORKLOAD DEFERRED_GBUFFERUPDATE_DEFAULT
indirect dispatch DISPATCHWORKLOAD_ DEFERRED_GBUFFERUPDATE_FEATURESUBSETO (GREEN):

LRV R e D, . A e L B e T D L T
J: computetileclassificationgenindirectdispatchargs: 1.
J: computetileclassificationgenindirectdispatchargs: 1la.
J: computetileclassificationgenindirectdispatchargs: 1b.
): computetileclassificationgenindirectdispatchargs: lc,
): computetileclassificationgenindirectdispatchargs:
J: computetileclassificationgenindirectdispatchargs:
J: computetileclassificationgenindirectdispatchargs:
): computetileclassificationgenindirectdispatchargs: 1.
): computetileclassificationgenindirectdispatchargs: 1la.
): computetileclassificationgenindirectdispatchargs: 1b,
): computetileclassificationgenindirectdispatchargs: ilc.
): computetileclassificationgenindirectdispatchargs:
): computetileclassificationgenindirectdispatchargs:

lassificationgenindirectdispatchargs:

.
0 F L

Red:
Green:
Blue:

96 VGPRs
82 VGPRs
89 VGPRs

indirect

red G-Buffer Update Workloads

ro

|

[1'rileae e
" Features! 229377
DFADQUE_DEFERRED

ENVWNETNESS_DROPSDRIES
ENVWETHESS_FUDDLE S

SUNCAUSILICS

(RED):

;spa}cq,D}S?aTCHWORKLOAD_DEFERRED_GBUFFERUPDATE_FEETURESUBSET1 (BLUE):

9248 threadgroups (14%)
22496 threadgroups (34%)
12512 threadgroups (19%)

9216 threadgroups (14%)
22432 threadgroups (34%)
12544 threadgroups (19%)

I T " ——— T R, . "y M o L e T T e R S R
(1 hits): computetileclassificationgenindirectdispatchargs: 1. SSS update group stats
(1 hits): computetileclassificationgenindirectdispatchargs: 1la. theoretical fullscreen threadgroups: 65280 (100%)
(—LIrhite) computet:l.lec1ass:.£;.catmngenlndlrectd:.spatchargs: 1b. actual dispatched threadgroups: 24768 (38%)
(1 hits): computet:.lec1asa1ﬁﬁﬂ&ongen;ud;rectd;spatchargs: aHal discarded threadgroups (not dispatched): 40512 (62%)
(. 1Rbits 5 computet:.leclaqs:.f:.cat:.on enindirectdispatchargs: indirect dispatch TIE CLASSIFICATION_ DISPATCHWORKLOAD_SSS: 24768 threadgroups (RED)

lgzm
@
Deferred SSS Update Workloads AN | | ‘
Red: Run Filter Chain s 0\ VN // | \ .
SRR i 5
i Y { f*f £l \
= 4 s o

.‘? Graphics Programming Conference, November 18-20, Breda 2025

Make sure to not introduce subtle differences
Developed debug tools on the fly when necessary
Shader printfs, debug color, debug geometry (lines, spheres, boxes, etc.)

Forward

4T5m

g
@

@ Graphics Programming Conference, November 18-20, Breda

id &

id &

Hardware VRS worked great in DOOM Eternal / Forward+
Doesn‘t work with compute-based Deferred Texturing/Lighting
Software-based VRS alternative for compute shaders

VRCS Deep Dive later today at 4pm!

Variable-Rate Compute Shaders in DOOM:
The Dark Ages

E? Graphics Programming Conference, November 18-20, Breda 202 5

d &

Compute Shading Rate
Reduce amount of uniquely calculated pixels
Re-schedule compute threads to retire compute waves early

Variable-Rate Computer Shaders

IR

@ Graphics Programming Conference, November 18-20, Breda

d &

VRCS for all deferred opaque geometry
(Deferred Texturing + Lighting + G-Buffer Update)

Hardware-VRS still supported for Transparents / F+ opaque

Solid win in performance at comparable image quality
~10% in in GPU time in average (1-2 ms)
Depending on platform and resolution

Great success, but also not a silver bullet
non-trivial to catch all corner cases

scarlett m2a rs 85% FRAME D-TEX D-GBU D-LGHT g
VRCS on (ms) 15.9 1.473 0.897 1.352 o N
VRCS off (ms) 17.7 2.287 1.118 2.053 =w. "

delta (ms) 18 0814 0221 0.701 } 7_€@©7\
& 50 100

perf gain (%) 10.17% 35.99% 19.77% 34.15%

? Graphics Programming Conference, November 18-20, Breda

id &

Shipped a hybrid rendering approach in DOOM: The Dark Ages
Visibility Buffer / Deferred Rendering / Forward+

Saved several milliseconds of GPU performance
Not all cases a substantial win, but never a loss!
Diminishing returns with low triangle density

High memory requirements
Quite an effort 8 months before ship.
Underestimated time to reach shading-parity

More complex rendering
Non-trivial to pinpoint issues

@ Graphics Programming Conference, November 18-20, Breda 202 5

« Saved up to ~25% on our targets in average

« Bonus: Resolution scaling is more effective in Deferred
« Performance scales better (almost linearly) with number of pixels.

« Luckily, we could afford the additional memory
« Memory scales well with resolution

« More positive than negative effect: Weaker platforms (consoles) usually run at lower
resolutions, reducing memory overhead

GPU TIME FWD+ FWD+ Deferred Deferred
(Xbox Series X) 2560x1440 |1811x1019 2560x1440 1811x1019
100% 50% 100% 50%

Opaque pass (ms) 9.43 (100%) 6.4 (-33%) 7.5 (100%) 3.9 (-48%)

MEMORY 3840x2160 |2560x1440

Overall 330.48 MB 143.39 MB

48
‘? Graphics Programming Conference, November 18-20, Breda 2 02 5

F &

Run deferred texturing on async compute
Didn’t find a good place so‘far, not enough-low-ALU graphics work anymore

___‘__&\ id &
t - N

YN l s

Use pixel dispatch commands also for-deferred lighting stage
Would allow more targeted shaders for lighting, less uber-shaders
No need for (much coarser) tile classification anymore

Run Texturing,-Decals, Lighting all in one shader again
VGPR and shader complexity issues

Reduce memory footprint of all techniques
(e.g. by leaning into memory-aliasing more)

Use software-rasterization for visibility pass

h B\ N\ /e = \
i 1 1 Y) S\ X

? Graphics Programming Conference, November 18-20, Breda 202 5

e

Pks o) \

Research Demos and Proof—of—Con?ebt protofy_pes are great

-> but often not enough!
Must ship your tech with a game

-> real-world relevance important!
Always profile min spec!

-> |deally on user devices
Investing in debug features always pays off

-> Shader-printf, shader primitive drawing, shader-asserts
Adding major changes very late can work

-> But always have a fallback working solution!

Teamwork is key
-> Often more than the sum of its parts!

)

A ST 1 « T W .Y
e ‘) ¥ S~ BB

.‘? Graphics Programming Conference, November 18-20, Breda

“Bethesda ZeniMax"

i I

2025

The entire idTech team (alphabetical):

Allen Bogue, Billy Khan, Bogdan Coroi, Carson Fee,
Dominik Lazarek, Ian Malerich, John Roberts, Jean Geffroy,
Johan Donderwinkel, Mel-Frederic Fidorra, Oliver Fallows,
Dr. Peeter Parna, Philip Hammer, Regan Carver,

P|e ase ask some Seth Hawkins, Stefan Pientka, Thorsten Lange,
A Tiago Sousa and Yixin Wang
questions!

id Software leadership (Marty Stratton, Hugo Martin)
Martin Fuller & the Microsoft ATG team
Our amazing art teams

Everyone else at id Software, ZeniMax and Xbox

id Pooy

TECHS DARK AGES

‘? Graphics Programming Conference, November 18-20, Breda 2 02 5

[McLaren22]
[Fuller22a]

[Fuller22b]

[Hammer25]
[Wihlidal24]
[Karis21]
[Doghramachil?]

[Geffroy20]

[Hecker95]

“Adventures with Deferred Texturing in Horizon Forbidden West.” James McLaren GDC 2022

“Variable Rate Compute Shaders - Halving Deferred Lighting Time”, Martin Fuller,
Microsoft Game Dev YouTube Channel, 2022
https://www.youtube.com/watch?v=Sswuj7BFjGo

“Variable Rate Shading Update Xbox Series X|S” Martin Fuller, Philip Hammer, Christopher Wallis
Microsoft Game Dev YouTube Channel, 2022,
https://www.youtube.com/watch?v=pPyN9r5QNbs

"Variable-Rate Compute Shaders in DOOM: The Dark Ages”,
Graphics Programming Conference 2025

“Nanite GPU-Driven Materials.”, Graham Wihlidal, GDC 2024, 2024.

“Nanite: A Deep Dive” Brian Karis, Rune Stubbe, Graham Wihlidal, Siggraph 2021

“Deferred+: Next-Gen Culling and Rendering for Dawn Engine” Hawar Doghramachi, Jean-
Normand Bucci. GPU Zen: Advanced Rendering Techniques, edited by Wolfgang Engel, 2017.

“Rendering the Hellscape of DOOM Eternal”, Jean Geffroy, Axel Gneiting,
Yixin Wang, Siggraph 2020

Chris Hecker. “Perspective Texture Mapping.” Game Developer Magazine April/May 1995, 1995.

.‘? Graphics Programming Conference, November 18-20, Breda

id &

2025

https://www.youtube.com/watch?v=Sswuj7BFjGo
https://www.youtube.com/watch?v=pPyN9r5QNbs
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf
https://www.chrishecker.com/images/4/41/Gdmtex1.pdf

1d PN

TecHs DARKAGES

) Graphics Programming Conference, November 18-20, Breda 202 5

id &

FWD+ Deferred Deferred
78\ ALS)) /W VRCS

Pixel-commands &
dispatch args (async)

Attribute Interpolation
(async)

VRCS Shading Rate
(async)

& £gf z I : .,
LB AN A + &%
> A e e .

Deferred Texturing

340 20 ===, g

‘,DQB 3

~Siege” Scene
Xbox Series X - 2560x1440 — no resolution scaling

G-Buffer Update

Deferred Lighting

Forward+ Opaque

Pass
Overall (no async) 7,78 7.30
Overall (w/ async*) RS 7.5 (-20%) 7.0 (-25%)

*Qverall times w/ async derived from overall GPU frame time diffs

‘;ff Graphics Programming Conference, November 18-20, Breda 2 02 5

id &

- Memory cost relatively high atm Deferred
« Some memory aliased with other
techniques
(e.g. strands hair simulation)

« Aliasing still a bit under-used in
idTech8

« Memory scales a lot with resolution
« More positive than negative effect:
Weaker platforms (consoles) usually
run at lower resolutions, reducing
memory overhead

Tile Classification

Visibility Buffer
Dispatch Buffers

Pixel Commands + Counter Buffers
(aliased w/ hair)

Barycentric Derivatives

Barycentrics
Tangent Frame
Overall Deferred

Shading rate Images
VRS + VRCS

Luma Images
(VRS + VRCS)

VRCS Copy Bits
VRCS Coordinates
Overall VRCS

TC Buffers + Indirect args

Overall

3840x2160
63.75
20.11

57 (-32
strands
hair)

63.75

31.88
63.75
268.24
2.3

16

2560x1440
30
10.3

26 (-26
strands hair)

30

15
30

All results in MiB; includes alignment / padding

? Graphics Programming Conference, November 18-20, Breda

2025

	Folie 1
	Folie 2
	Folie 3: idTech: Driving the iconic FPS games at id Software
	Folie 4: Mission-Statement for idTech 8 and DOOM: The Dark Ages
	Folie 5: Fast-Forward: September 2024 (Release: May 2025)
	Folie 6: Dissecting Opaque Geometry Bottlenecks
	Folie 7: Dissecting Opaque Geometry Bottlenecks
	Folie 8: Dissecting Opaque Geometry Bottlenecks
	Folie 9: Dissecting Opaque Geometry Bottlenecks
	Folie 10: Dissecting Opaque Geometry Bottlenecks
	Folie 11: Interlude: Clarifying Terminology / Common idTech concepts
	Folie 12: Triangle Visibility Buffer
	Folie 13: Triangle Visibility Buffer
	Folie 14: Material Dispatch Generation
	Folie 15: Material Quad Dispatch
	Folie 16: Material Quad Dispatch
	Folie 17: Material Quad Dispatch – Dissecting Performance Bottlenecks
	Folie 18: Interlude: Opaque Shader Performance Characteristics
	Folie 19: Material Compute Dispatch
	Folie 20: Material Compute Dispatch - Details
	Folie 21: Material Compute Dispatch – Dispatching Waves
	Folie 22: Material Compute Dispatch – Debugging
	Folie 23: Deferred Attribute Interpolation
	Folie 24: Deferred Attribute Interpolation
	Folie 25: Material Compute Dispatch – Results
	Folie 26: Deferred Texturing
	Folie 27: Deferred Texturing - Optimizations
	Folie 28: Deferred Texturing - Optimizations
	Folie 29: Deferred Lighting G-Buffer Update Tile Classification Variable-Rate Compute Shaders
	Folie 30: Deferred G-Buffer Update & Lighting
	Folie 31: Deferred G-Buffer Update & Lighting
	Folie 32: Deferred G-Buffer Update & Lighting
	Folie 33: Deferred G-Buffer Update & Lighting
	Folie 34: Deferred G-Buffer Update & Lighting
	Folie 35: Deferred Dispatches with Tile Classification
	Folie 36: Deferred Dispatches with Tile Classification
	Folie 37: Deferred Dispatches with Tile Classification
	Folie 38: Example Tile Classification for different Passes
	Folie 39: Example Tile Classification for different Passes
	Folie 40: Example Tile Classification for different Passes
	Folie 41: Example Tile Classification for different Passes
	Folie 42: Example Tile Classification for different Passes
	Folie 43: Maintaining Visual Parity
	Folie 44: Variable-Rate Shading
	Folie 45: Variable-Rate Compute Shaders
	Folie 46: Variable-Rate Compute Shaders
	Folie 47: Summary & Results
	Folie 48: Summary & Results
	Folie 49: Future Developments
	Folie 50: Final thoughts & takeaways
	Folie 51: Thanks!
	Folie 52: References
	Folie 53: Bonus Slides
	Folie 54: Detailed Performance Results
	Folie 55: Memory Results

