
1

VISIBILITY BUFFER AND DEFERRED RENDERING

in DOOM: The Dark Ages

Dominik Lazarek
Principal Engine Programmer

Philip Hammer
Principal Engine Programmer

22

https://youtu.be/4tk8lkmYGWQ?t=21

33

idTech: Driving the iconic FPS games at id Software

44

Mission-Statement for idTech 8 and DOOM: The Dark Ages

• Higher-fidelity geometry and material layering
• “More of everything”: Triangles, NPCs, Map-sizes,….
• 60 FPS + low latency across all targets

55

Fast-Forward: September 2024 (Release: May 2025)

• ~8 Months before ship date
• Main content and design done
• Nowhere near our performance targets
• Optimizations desperately needed
• Engine department entered optimization phase across the board

• Some of us focused on opaque geometry rendering

66

Dissecting Opaque Geometry Bottlenecks

• Opaque geometry rendering contributes to ~40% of total frametime
• Where do we lose performance?

Observations:

• Opaque rendering pipeline: Clustered Forward+

• Two full geometry-passes needed

• Complex texturing & lighting shader
• Added features (POM, Material-blending,…)
• Large code-size, high VGPR count

• Main slowdowns on views with high triangle density

77

Dissecting Opaque Geometry Bottlenecks

• Profiling showed: Very bad quad utilization efficiency
• What is quad utilization anyway?
• Let‘s look at a quick example of a rasterized triangle somewhere on screen

Active threads

Helper threads

14 active threads + 18 helper threads = 32 pixel shader threads overall
Quad utilization: 14 active / 32 overall = 43% of threads „utilized“

88

Dissecting Opaque Geometry Bottlenecks

• Quad utilization efficiency becomes worse with smaller triangles
(at constant resolution)

14 active / 32 overall = 43% utilization 2 active / 8 overall = 25% utilization

99

Dissecting Opaque Geometry Bottlenecks

How to deal with bad quad utilization efficiency?

• Can‘t avoid quad-shading in HW rasterization

• Software rasterization for sufficiently small triangles? -> Out of scope

• Limit impact of helper-thread overhead
• Make depth pass the only rasterized geometry pass
• Will suffer from helper-threads, but cheap shader logic
• Expensive texturing & lighting logic: Avoid expensive helper-thread overhead

(e.g. offload to compute shader)

1010

Dissecting Opaque Geometry Bottlenecks

• Need triangle-attributes per pixel (e.g. UVs, derivatives…)

• Need to dispatch different compute shaders for different groups
of pixels (e.g. different materials,…)

• No hardware-VRS usable anymore

Triangle Visibility Buffer
+Attribute Interpolation

Material Compute Dispatch

Variable-Rate Compute
Shaders (VRCS)

While we‘re at it:
• Split texturing- & lighting into separate passes

• Lower VGPR count for each stage
• Easier for shader-compilers to optimize
• We had G-Buffer anyway…

Things to solve when Texturing & Lighting is done in compute:

1111

Interlude: Clarifying Terminology / Common idTech concepts

Models

Surfaces
(Mesh-part + Material)

• „Surfaces“ are the smallest elements from models
that we render.

• Identifies a portion of the geometry + a material

• “Material”: Textures + Parameters – not shader

• Vertex Position + attributes available as large
buffer on GPU

• GPU-Driven model-gather & (triangle-)culling

• Material-Textures are „bindless“

1212

Triangle Visibility Buffer

• Generated during Depth Prepass early in frame
• Writing gl_PrimitiveID in pixel shader
• „Depth Prepass“ → „Visibility Pass“

Visibility Buffer (RG 32)
| 0 ... 31 | 0 ... 31 |

Triangle Index (32 bits) 1

Instancing?

1

Winding Order

Surface Index (21 bits)

Triangle Index

Surface/Instance Index

• 64 bpp texture storing:
• Triangle index

(resolved to pre-culled index; relative to mesh)

• Surface/Instance index
• Flag: Winding order
• Flag: Uses HW-instancing?

1313

Triangle Visibility Buffer

• Export more data during Visibility Pass?
• UV-Derivatives?
• Tangent Frame?
• Both required for texturing/lighting later on
• Trivially available during Visibility Pass (HW rasterization with quad helper threads)

Let‘s profile!
• „Slim“ Visibility Buffer @ 64 bpp (Triangle- & Surface Index)

• No measurable performance impact
• Still bottlenecked by vertex processing; Adding more pixel-exports „free“.

• „Fat“ Visibility Buffer @ 128 bpp („Slim“ + UV-Derivatives + Tangent Frame)
• Performance impact measurable now
• Bottleneck becomes pixel-export bandwidth 

→ Stick to „Slim“ variant and reconstruct from barycentrics later

1414

Material Dispatch Generation

• Visibility buffer generated – now what?
• Need to derive draw-calls from it

• Lots of good references around
e.g. Horizon: Forbidden West ([McLaren22]), Epic Games ([Karis21], [Wihlidal24]),
Eidos Dawn Engine (Doghramachi17)

Two often-cited approaches:
• Quad-Dispatch

• Render (Fullscreen-) Quad per material.
„Early-out“ on pixels not matching material

• Compute Dispatch
• Build explicit lists of pixels per material
• Sort into GPU-Waves and dispatch over them

• → Decided to go with Quad-Dispatch first (faster to get up and running…)

1515

Material Quad Dispatch

• How to efficiently „early-out“? Discard() per pixel? → Too late! Wave already launched
• Idea [Doghramachi17]: Use a „fake“ depth buffer

• Depth buffer contains material-IDs, primed in additional full-screen triangle pass

• For each unique material on screen:
• Render quad over screenspace bounds of that material (depth test = GL_EQUAL)
• Vertex shader: Output matching „fake depth“ value as well

• → Only pixels matching this material will get rasterized.

1616

Material Quad Dispatch

Ok, so how does it perform?

Forward+ Quad Dispatch

14.3 ms 14.26 ms
(RTX 5080 @ 4k)

 This isn‘t any improvement at all! Why?!

1717

Material Quad Dispatch – Dissecting Performance Bottlenecks

Let‘s fire up NSIGHT and profile!

New pixel shader work is stalled on waits on the FrontEnd stage

A LOT of input pixels!

Still A LOT after coarse rasterization (Hi-Z)

Most of the pixels only get culled during
fine rasterization (Early-Z)

Interpretation:
• Hi-Z isn‘t very effective with the „fake“ depth buffer.

• Contains only material-Ids, not hierarchical at all – can appear random on screen
• Fine rasterization has too much work, becoming a bottleneck

• Decided to also implement the compute-based dispatch approach next!

1818

Interlude: Opaque Shader Performance Characteristics

Let‘s first review some opaque shader performance properties:

• Forward+: Each drawcall comes from a single surface
• Material- & Entity- constants are uniform across a whole pixel-shader wave
• Material-Textures are sampled uniformly across a wave
• Uniformity known at compile-time: Shader compiler can produce more optimal instructions.

• → Compute-Dispatch needs to maintain uniformity as best as possible
• Keep materials uniform per wave → Uniform texture- and buffer-reads

1919

Material Compute Dispatch
• Our approach loosely follows the ideas presented in [McLaren22]

Core idea:
• Process Visibility Buffer in Tiles
• Write tile-local pixel-coordinates into large buffer
• Padded up to HW wave size – keeps material uniform within wave
• Sorted by shader, tile and material

Visibility Buffer
256 x 256 pixels per Tile

(8 x 8 pixels shown)

Material 1, Shader 0
Material 0, Shader 1

...…

“PixelCommands” Buffer

GPU Hardware wave size
(e.g. 32 or 64)

Empty “padding”-pixelsOffset in buffer?

• But: How do we come up with the correct offset into the buffer?

2020

Material Compute Dispatch - Details

Visibility Buffer

Prefix Sums: Generate offsets,
count pixels per shader/Tile, per shader

Offsets per Shader/Tile/Material

Num pixels per Shader/Tile, per Shader

Count pixels

Num pixels per Shader/Tile/Material

Shaders

Tiles
Materials

• Series of compute passes
• Counting pixels in Visibility Buffer

per shader, tile, mat
• Restricted to visible shaders, materials

Visible set registered during GPU
Gather/Culling

• Generate offsets using prefix sums
• Results:

• Number of pixels per shader and tile
(all materials)

• Global offset per material
• Global offset per shader

(all tiles, materials – needed for CPU
dispatch)

...…

“PixelCommands” Buffer

2121

Material Compute Dispatch – Dispatching Waves

• On CPU-Side: (Multi*-) indirect dispatch call for each Shader-pipeline
• Each dispatch launches all material-waves within a single tile
• In dispatched shader:

• Read offset into pixelCommandsBuffer at DispatchID* (encodes PSO- & tile-index)
• Read pixel-coordinates at pso_and_tile_index + gl_LocalInvocationID.x
• (Actual material inferred from Visibility Buffer (surface Index))

• *Multi-indirect dispatch only available on D3D12 (custom ID3D12CommandSignature)
• On other platforms: Have to emulate

• Group multiple (logical) dispatches within each Group in X-dimension
• Group Y-dimensions collects individual dispatches → gl_LocalInvocationID.y ==

DispatchID
• Reduce overhead from larger Group-counts in X-dimension by splitting dispatches into

a series of power-of-two sized buckets

2222

Material Compute Dispatch – Debugging

• No actual shader-logic yet – but we can already debug!
• Investment in debugging visualizations / shader-printf / shader-asserts always a win

2323

Deferred Attribute Interpolation

• We can render random colors very efficiently now!
• Next up: Textures & Lighting
• All compute based now – need to manually compute vertex-attributes, UV-Derivatives, Tangent

Frame
• Performed in a dedicated compute pass running on async together with pixelCommand builds
• Could also do this inline in texturing/lighting shader, but increases VGPRs considerably

2424

Deferred Attribute Interpolation

• Actual interpolation math nothing new (follows old software rasterizers such as [Hecker95])
• We interpolate & store:

• Barycentric coordinates (2x Float16)

• Packed Barycentric derivatives (DDX / DDY) + flags (winding order, tangent sign)
Derivatives clamped to]-2.0..2.0[to save one bit and store flags.

• Tangent Frame (4x Float16)

Barycentric Coordinates (RG 16F) .
.
.

Barycentric X Barycentric Y

Barycentric Derivatives (RGBA 16UI)
(Packed + Flags)

.

.

.

Barycentric DDX.x Barycentric DDX.y

Front facing Normal sign

.

.

.

Barycentric DDY.x Barycentric DDY.y

Tangent sign Bitangent sign

Tangent Frame (RGBA 16F) .
.
.

World Normal.x World Normal.y
.
.
.

World Tangent.x World Tangent.y

2525

Material Compute Dispatch – Results

• Early performance results look much more promising than quad dispatch
→ We decided to continue with this direction!

Forward+ (ms) Quad Dispatch (ms) Compute Dispatch (ms)

14.3 14.26 10.4*

* 10.4 = 0.6 dispatch generation + 9.8 render w/ attribute interpolation

• Caveat: Performance-wins vary with visible scene
(e.g. large triangles on ground: Not much win – but also not worse!)

Forward+ (ms) Compute Dispatch (ms)

2.75 2.7

• Initial version: Compute dispatch w/ attribute interpolation as direct replacement for Forward+
(Texturing + Lighting combined)

• Using only the most basic features to compare performance w/ Forward+

2626

Deferred Texturing

• Each shader-pipeline supporting deferred texturing gets a new
compute-shader stage

• Same logic as Forward+ pixel shader, but only blends materials

• Dispatched using the pixelCommands buffer and inidrect dispatch
args preared from Visibility Buffer earlier

• Output to GBuffer

shaderPipeline outside {

 hlsl_vp {

 // Forward+ Vertex Shader

 }

 hlsl_fp {

 // Forward+ Pixel Shader

 }

 hlsl_cp {

 localSize { 64, 1, 1 }

 // Deferred Texturing Compute Shader

 }

}

2727

Deferred Texturing - Optimizations

• Pixel-command wave packing ensures that bindless texture indices are uniform

• However: Meshes/Entities can still be divergent:
Less optimal Mesh/Entity-cBuffer access patterns

• Results in higher VGPR count, less efficient compiled shader code

2828

Deferred Texturing - Optimizations

Observation:
In most cases, all wave-pixels in fact come from the same mesh & entity
• Leverage with a simple trick:

Dispatch all waves in two permutations – divergent vs uniform data
• Check uniformity with subgroup ops – early out if assumption is violated
• Slightly better: Build two different dispatch commands from the start. Would avoid overhead

starting waves and earlying out

const bool dataIsUniform = subgroupAllEqual(meshDataHandle);

#if defined(SHADER_VERSION_UNIFORM_DATA)

 if (dataIsUniform == false) {

 // Uniform version but data is divergent, early out

 // Pixels will be processed by the divergent version

 return;

 }

 // Data is uniform, use subgroupBroadcastFirst() to let the shader compiler know

 meshDataHandle = subgroupBroadcastFirst(meshDataHandle);

#else

 if (shaderHasUniformDataVersion && dataIsUniform) {

 // Divergent version but data is uniform, early out

 // Pixels will be processed by the uniform version

 return;

 }

#endif

29

Deferred Lighting
G-Buffer Update
Tile Classification
Variable-Rate Compute Shaders

3030

Current state: G-Buffer from our opaque geometry – what‘s next?

Blend G-Buffer modifications

Geo Decals, Projective Decals, Wetness and Rain VFX, Triplanar Blood Layer

Compute Lighting

Final G-Buffer, only write-out 1 RT with final lighting

Same clusters and very similar shader code as F+

Option to compute combined or split into 2 phases

Split setup: 1 additional G-Buffer read, but less complex shaders

On most platforms a decent win

Only write touched G-Buffer channels

Deferred G-Buffer Update & Lighting

3131

Deferred G-Buffer Update & Lighting

No modifications to the G-Buffer

3232

Deferred G-Buffer Update & Lighting

+ Geo Decals

3333

Deferred G-Buffer Update & Lighting

+ Geo Decals
+ Projected Decals

3434

Deferred G-Buffer Update & Lighting

+ Geo Decals
+ Projected Decals
+ Triplanar Dynamic Blood
+ (rain/wetness vfx)

3535

Split uber-shaders into feature set permutations with varying complexity

-> Keep VGPR usage low

Select permutation based on classification tile mask

Segment screen into 32x32 pixel tiles

Matches clustered bin tile size for lights/decals

Goal is to indirect-dispatch tailored
shaders for each tile

Split uber shaders into smaller subsets

Better wave occupancy (less VGPRs)

No dispatch for unnecessary tiles
(avoids per-pixel checks)

Deferred Dispatches with Tile Classification

3636

Each tile stores 32-bit bitmask

Add feature bit if pixel touches the tile

A feature can be BRDF type, „hasDecal“, etc.

Build feature bitmask using scalarized atomicOr
throughout the frame

Deferred Dispatches with Tile Classification

TC_FEATURE_OPAQUE 0x01
TC_FEATURE_BRDF_CLOTH 0x02
TC_FEATURE_BRDF_SKIN 0x04
TC_FEATURE_DECALS 0x08

0x05 0x03

0x0D 0x03

0x03

0x00 0x0D

0x000x03

0x03 0x03

0x01

0x01 0x01 0x01 0x01

uint featureBitmask = 0x0;

featureBitmask |= (hasSkinBRDF) ? (1 << TC_FEATURE_BRDF_SKIN) : 0x0;

featureBitmask |= (hasClothBDRF) ? (1 << TC_FEATURE_BRDF_CLOTH) : 0x0;

uint64 remainingLanes = subgroupBallot(true);

while (anyNotEqual(remainingLanes, 0x0)) {

 uint laneIndex = subgroupBallotFindLSB(remainingLanes);

 uint uniformIndex = subgroupBroadcast(bufferBaseIdx, laneIndex);

 uint64 equalMask = subgroupBallot(bufferBaseIdx == uniformIndex);

 remainingLanes &= ~equalMask;

 if (gl_subgroupInvocationID == laneIndex) {

 atomicOr($tileClassificationPayloadBufferRW[index], featureBitmask);

 }

}

3737

Tile features translate to specific compute workloads

Each workload is an indirect-dispatch call

Each tile is an indirect argument as part of the workload

Workload generation

Store tile count per workload

Store tile position per tile as 1D index

Workload dispatch

Reconstructed global 2d screen position in shader

Deferred Dispatches with Tile Classification

3

3

2

2

2

2

2

2 2

1

1 1 1 1
Dispatch Workload 1

TC_FEATURE_OPAQUE

Dispatch Workload 2

TC_FEATURE_OPAQUE AND
TC_FEATURE_BRDF_CLOTH

Dispatch Workload 3
(2 tiles)

TC_FEATURE_OPAQUE AND
TC_FEATURE_BRDF_SKIN OR
TC_FEATURE_DECALS

3838

Example Tile Classification for different Passes

3939

Example Tile Classification for different Passes

4040

Example Tile Classification for different Passes

Deferred Lighting Workloads

Red: 122 VGPRs
Green: 88 VGPRs
Blue: 78 VGPRs

4141

Example Tile Classification for different Passes

Deferred G-Buffer Update Workloads

Red: 96 VGPRs
Green: 82 VGPRs
Blue: 89 VGPRs

4242

Example Tile Classification for different Passes

Deferred SSS Update Workloads

Red: Run Filter Chain

4343

Make sure to not introduce subtle differences

Developed debug tools on the fly when necessary

Shader printfs, debug color, debug geometry (lines, spheres, boxes, etc.)

Maintaining Visual Parity

4444

Hardware VRS worked great in DOOM Eternal / Forward+

Doesn‘t work with compute-based Deferred Texturing/Lighting

Software-based VRS alternative for compute shaders

Variable-Rate Compute Shaders (VRCS)

VRCS Deep Dive later today at 4pm!

Variable-Rate Shading

4545

Variable-Rate Computer Shaders

Hardware VRS

Compute Shading Rate

Reduce amount of uniquely calculated pixels

Re-schedule compute threads to retire compute waves early

Variable-Rate Compute Shaders

VkRenderingFragmentShadingRate
AttachmentInfoKHR

RSSetShadingRateImage()

4646

VRCS for all deferred opaque geometry

(Deferred Texturing + Lighting + G-Buffer Update)

Hardware-VRS still supported for Transparents / F+ opaque

Solid win in performance at comparable image quality

~10% in in GPU time in average (1-2 ms)

Depending on platform and resolution

Great success, but also not a silver bullet

non-trivial to catch all corner cases

Variable-Rate Compute Shaders

4747

Shipped a hybrid rendering approach in DOOM: The Dark Ages
Visibility Buffer / Deferred Rendering / Forward+

Summary & Results

Saved several milliseconds of GPU performance
Not all cases a substantial win, but never a loss!
Diminishing returns with low triangle density

High memory requirements
Quite an effort 8 months before ship.
Underestimated time to reach shading-parity

More complex rendering
Non-trivial to pinpoint issues

THE GOOD

THE BAD

THE UGLY

4848

• Saved up to ~25% on our targets in average

• Bonus: Resolution scaling is more effective in Deferred

• Performance scales better (almost linearly) with number of pixels.

• Luckily, we could afford the additional memory

• Memory scales well with resolution

• More positive than negative effect: Weaker platforms (consoles) usually run at lower
resolutions, reducing memory overhead

Summary & Results

MEMORY 3840x2160 2560x1440

Overall 330.48 MB 143.39 MB

GPU TIME
(Xbox Series X)

FWD+
2560x1440
100%

FWD+
1811x1019
50%

Deferred
2560x1440
100%

Deferred
1811x1019
50%

Opaque pass (ms) 9.43 (100%) 6.4 (-33%) 7.5 (100%) 3.9 (-48%)

4949

Run deferred texturing on async compute

Didn’t find a good place so far, not enough low-ALU graphics work anymore

Use pixel dispatch commands also for deferred lighting stage

Would allow more targeted shaders for lighting, less uber-shaders

No need for (much coarser) tile classification anymore

Run Texturing, Decals, Lighting all in one shader again

VGPR and shader complexity issues

Reduce memory footprint of all techniques
(e.g. by leaning into memory-aliasing more)

Use software-rasterization for visibility pass

Future Developments

5050

Research Demos and Proof-of-Concept prototypes are great

-> but often not enough!

Must ship your tech with a game

-> real-world relevance important!

Always profile min spec!

-> ideally on user devices

Investing in debug features always pays off

-> Shader-printf, shader primitive drawing, shader-asserts

Adding major changes very late can work

-> But always have a fallback working solution!

Teamwork is key

-> Often more than the sum of its parts!

Final thoughts & takeaways

51

Thanks!
Please ask some

questions!

Acknowledgements

The entire idTech team (alphabetical):

Allen Bogue, Billy Khan, Bogdan Coroi, Carson Fee,
Dominik Lazarek, Ian Malerich, John Roberts, Jean Geffroy,

Johan Donderwinkel, Mel-Frederic Fidorra, Oliver Fallows,
Dr. Peeter Parna, Philip Hammer, Regan Carver,
Seth Hawkins, Stefan Pientka, Thorsten Lange,

Tiago Sousa and Yixin Wang

id Software leadership (Marty Stratton, Hugo Martin)

Martin Fuller & the Microsoft ATG team

Our amazing art teams

Everyone else at id Software, ZeniMax and Xbox

5252

References

[McLaren22] “Adventures with Deferred Texturing in Horizon Forbidden West.” James McLaren GDC 2022

[Fuller22a] “Variable Rate Compute Shaders - Halving Deferred Lighting Time”, Martin Fuller,
 Microsoft Game Dev YouTube Channel, 2022
 https://www.youtube.com/watch?v=Sswuj7BFjGo

[Fuller22b] “Variable Rate Shading Update Xbox Series X|S”, Martin Fuller, Philip Hammer, Christopher Wallis
 Microsoft Game Dev YouTube Channel, 2022,
 https://www.youtube.com/watch?v=pPyN9r5QNbs

[Hammer25] "Variable-Rate Compute Shaders in DOOM: The Dark Ages",
 Graphics Programming Conference 2025

[Wihlidal24] “Nanite GPU-Driven Materials.”, Graham Wihlidal, GDC 2024, 2024.
 https://gdcvault.com/play/1034407/Nanite-GPU-Driven

[Karis21] “Nanite: A Deep Dive” Brian Karis, Rune Stubbe, Graham Wihlidal, Siggraph 2021
 https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

[Doghramachi17] “Deferred+: Next-Gen Culling and Rendering for Dawn Engine” Hawar Doghramachi, Jean-
 Normand Bucci. GPU Zen: Advanced Rendering Techniques, edited by Wolfgang Engel, 2017.

[Geffroy20] “Rendering the Hellscape of DOOM Eternal”, Jean Geffroy, Axel Gneiting,
 Yixin Wang, Siggraph 2020
 https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf

[Hecker95] Chris Hecker. “Perspective Texture Mapping.” Game Developer Magazine April/May 1995, 1995.
 https://www.chrishecker.com/images/4/41/Gdmtex1.pdf

https://www.youtube.com/watch?v=Sswuj7BFjGo
https://www.youtube.com/watch?v=pPyN9r5QNbs
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://gdcvault.com/play/1034407/Nanite-GPU-Driven
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf
https://www.chrishecker.com/images/4/41/Gdmtex1.pdf

53

Bonus Slides

5454

„Siege“ Scene
Xbox Series X - 2560x1440 – no resolution scaling

FWD+
(w/ HW VRS)

Deferred Deferred
/w VRCS

Pixel-commands &
dispatch args (async)

0.35 0.35

Attribute Interpolation
(async)

0.43 0.43

VRCS Shading Rate
(async)

0.41

Deferred Texturing 4.20 3.79

G-Buffer Update 1.10 1.00

Deferred Lighting 1.70 1.32

Forward+ Opaque
Pass

9.43

Overall (no async) 9.43 7,78 7.30

Overall (w/ async*) 9.43 7.5 (-20%) 7.0 (-25%)

*Overall times w/ async derived from overall GPU frame time diffs

Detailed Performance Results

5555

Memory Results

• Memory cost relatively high atm

• Some memory aliased with other
techniques
(e.g. strands hair simulation)

• Aliasing still a bit under-used in
idTech8

• Memory scales a lot with resolution
• More positive than negative effect:

Weaker platforms (consoles) usually
run at lower resolutions, reducing
memory overhead

3840x2160 2560x1440

Deferred Visibility Buffer 63.75 30

Dispatch Buffers 20.11 10.3

Pixel Commands + Counter Buffers
(aliased w/ hair)

57 (-32
strands
hair)

26 (-26
strands hair)

Barycentric Derivatives 63.75 30

Barycentrics 31.88 15

Tangent Frame 63.75 30

Overall Deferred 268.24 115.3

VRCS Shading rate Images
VRS + VRCS

2.3 1.04

Luma Images
(VRS + VRCS)

16 7.5

VRCS Copy Bits 7.97 3.75

VRCS Coordinates 29.03 12.3

Overall VRCS 55.24 24.59

Tile Classification TC Buffers + Indirect args 7 3.5

Overall 330.48 143.39

All results in MiB; includes alignment / padding

	Folie 1
	Folie 2
	Folie 3: idTech: Driving the iconic FPS games at id Software
	Folie 4: Mission-Statement for idTech 8 and DOOM: The Dark Ages
	Folie 5: Fast-Forward: September 2024 (Release: May 2025)
	Folie 6: Dissecting Opaque Geometry Bottlenecks
	Folie 7: Dissecting Opaque Geometry Bottlenecks
	Folie 8: Dissecting Opaque Geometry Bottlenecks
	Folie 9: Dissecting Opaque Geometry Bottlenecks
	Folie 10: Dissecting Opaque Geometry Bottlenecks
	Folie 11: Interlude: Clarifying Terminology / Common idTech concepts
	Folie 12: Triangle Visibility Buffer
	Folie 13: Triangle Visibility Buffer
	Folie 14: Material Dispatch Generation
	Folie 15: Material Quad Dispatch
	Folie 16: Material Quad Dispatch
	Folie 17: Material Quad Dispatch – Dissecting Performance Bottlenecks
	Folie 18: Interlude: Opaque Shader Performance Characteristics
	Folie 19: Material Compute Dispatch
	Folie 20: Material Compute Dispatch - Details
	Folie 21: Material Compute Dispatch – Dispatching Waves
	Folie 22: Material Compute Dispatch – Debugging
	Folie 23: Deferred Attribute Interpolation
	Folie 24: Deferred Attribute Interpolation
	Folie 25: Material Compute Dispatch – Results
	Folie 26: Deferred Texturing
	Folie 27: Deferred Texturing - Optimizations
	Folie 28: Deferred Texturing - Optimizations
	Folie 29: Deferred Lighting G-Buffer Update Tile Classification Variable-Rate Compute Shaders
	Folie 30: Deferred G-Buffer Update & Lighting
	Folie 31: Deferred G-Buffer Update & Lighting
	Folie 32: Deferred G-Buffer Update & Lighting
	Folie 33: Deferred G-Buffer Update & Lighting
	Folie 34: Deferred G-Buffer Update & Lighting
	Folie 35: Deferred Dispatches with Tile Classification
	Folie 36: Deferred Dispatches with Tile Classification
	Folie 37: Deferred Dispatches with Tile Classification
	Folie 38: Example Tile Classification for different Passes
	Folie 39: Example Tile Classification for different Passes
	Folie 40: Example Tile Classification for different Passes
	Folie 41: Example Tile Classification for different Passes
	Folie 42: Example Tile Classification for different Passes
	Folie 43: Maintaining Visual Parity
	Folie 44: Variable-Rate Shading
	Folie 45: Variable-Rate Compute Shaders
	Folie 46: Variable-Rate Compute Shaders
	Folie 47: Summary & Results
	Folie 48: Summary & Results
	Folie 49: Future Developments
	Folie 50: Final thoughts & takeaways
	Folie 51: Thanks!
	Folie 52: References
	Folie 53: Bonus Slides
	Folie 54: Detailed Performance Results
	Folie 55: Memory Results

