Introduction

Julien Koenen
Technical Director
@ Keen Games

Andreas Mantler
or Graphics Programmer
@ Keen Games since 2024

Simon René Stemg
Junior Programmer
@ Keen Games since 2023

. Graphics Programming Conference, November 18-20, Breda

Introduction

L
]

JENSHROUDED |

j: @ \

b cmmr

b

7 Graphics Programming Conference, November 18-20, Breda 02 5

Introduction

J-NSHROUDED

WAKE OF THE WATER

COMING IN OCTOBER,

EARLY DEVELOPMENT BUILD OF ENSHROUDED UPDATE 7.

2 Graphics Programming Conference, November 18-20, Breda .’25

Introduction

Why Water?

2 Graphics Programming Conference, November 18-20, Breda 025

Introduction

Requirements

* Dynamic / Simulated

* Work with dynamic 3D voxel based world

« Gameplay interactions: Players, NPCs, Enemies, Fire, ...
 Believable and Predictable Movement

« Soft Real-Time

* Fixed memory budget

* Multiplayer (authoritative server, replication)

) Graphics Programming Conference, November 18-20, Breda

State of the Art

* Most games have static 2D planar water surfaces
 Even close relatives: Teardown, Valheim, ...

« Simulated water is usually limited
» Hydrophobia, From Dust, 7 Days to Die: 2.5D simulation
« Minecraft: Voxels expand by limited distance

» Academic Research usually too fine-grained/cost intensive and
not client-server ready

) Graphics Programming Conference, November 18-20, Breda

Introduction

2 Graphics Programming Conference, November 18-20, Breda 02 5

Simulation — Columns

« Bottom & Height
* Fluid section

 Displacement section

 Terrain/buildings/blocker
- FluidColumn

DisplacingColumn =

) Graphics Programming Conference, November 18-20, Breda

Simulation — Columns

FluidColumn {
« Bottom & Height
* Fluid sections

 Displacement sections
 Terrain/buildings

}DisplacingColumn

~ FluidColumn =4

o Stackable!

DisplacingColumn = DisplacingColumn

) Graphics Programming Conference, November 18-20, Breda

Simulation - Columns

—
Transfer

—
Transfer

Waterfall

New Water

Column O Column 1 Column 0 Column 1

~, Graphics Programming Conference, November 18-20, Breda

= 4 o @ oat © #r Debug

» Connections

i Debug | o Status | by Pull | 7 Push

Ecs Game Knowledge Whiteboxes Render Memory GPU Textures Texture Streaming Render Weather Impacts Weather

Environment FX Ambient FX Tracking Crafting Analysis Impact Stats Water Simulation
Priorities +# Draw FluidColumns Chunk selection range: @ Live
Lakes Draw Overpressure 2 Create Snapshot
@ Columns Draw Waterflows v Solid FluidColumns Clear Snapshots
+ Draw DisplacingColumns Draw Velocity
+ Solid DisplacingColumns
Print dispenser info

Print water flow info

7 Graphics Programming Conference, November 18-20, Breda 202 5

Simulation

Simulation — Chunks

1 layer 2 layers 4 layers N layers*

) Graphics Programming Conference, November 18-20, Breda

‘¥ Connections
Disconnect
Disconnect
Connect
Connect

Ecs

@ Friorities
Lakes

Columns

127.0.0.1 Server
127.0.0.1 Client0
127.0.0.1 Client1

127.0.0.1 Client2

Game Knowledge

Map

auto:

auto:
auto:

auto:

Whiteboxes

Render Memory

GPU Textures

Texture Streaming

Render Weather

Impacts

Weather

Environment FX

Pa9y24L
Fo
o8

Ambient FX

Tracking

) Graphics Programming Conference, November 18-20, Breda

Crafting Analysis

Impact Stats

4K Debug

Water Simulation

« Status

Priority Queue Simulation

J Chunks

Replication
Chunks

Server Client

| |

Gameplay Rendering

Sound
Synthesis

) Graphics Programming Conference, November 18-20, Breda

Rendering Water

* Focus here is GPU Representation and Surface Phenomena

« For (water) volumetrics please check out Philipp Krause’s talk:
* “The Fog is Lifting, Volumetric Rendering in Enshrouded”

* For more (water?) VFX tech insights there’s Lukas Feller’s talk:
» “Lessons learned from shipping a GPU Particle System”

) Graphics Programming Conference, November 18-20, Breda

From Columns to Voxels

« System dependency: Renderer -> Water Simulation Client
» Everything voxelized here

* Fetch queued “dirty boxes” each frame to trigger updates
* Dirty boxes are 3D voxel bounding boxes

e Simple interface:

fillWaterVoxelArray(WaterSimulationClient* pWater, ArrayView<uint8> buffer, uvint3 bufferSize, uint3 bufferStride,
vint Llevel, - 1nt3 position, ArrayView< ColumnData > columnData, includeWaterFlows =);

hasDirtyBoxes(WaterSimulationClient* pWater, -uint32 since);
getDirtyBoxes(Slice< WaterBox >% pDirtyBoxes, WaterSimulationClient* pWater, uint32#% pSince);

) Graphics Programming Conference, November 18-20, Breda

Data Considerations

Observations:
« Way too many 0.5°m? voxels in a 10k x 10k x 4k world
* Most voxels are either completely empty or completely filled with water
—=\Voxels containing a water surface are most interesting

* Voxels are blocky, but we want a smooth representation

|dea:
« Convert voxels to SDF grid only close to water surfaces
« Store SDF in a sparse GPU-friendly data structure
 Partition sparse space into either full or empty

) Graphics Programming Conference, November 18-20, Breda

Rendering

The Brick Tree

» Sparse octree, nodes with water surfaces are subdivided to desired LOD

« Empty and full octree nodes do not get subdivided

» Leaf nodes are “Bricks”

» Brick: 6x6x6 8bit SDF values with interpolation border (so 8x8x8 = 512bytes)

» Octree nodes are allocated from a node pool buffer, synced between CPU & GPU

» Bricks are stored separate, in a 3D texture (atlas/virtual texture/page table)

2 P P z z z
/ / _ == = = = = =
LT
_--7 Z =z =z = = =
=" z 2w 2 2w 2 A
-7 «
- - e
- - //
empty snﬁace q---"_J---~ \ ///
At 1
empty \ e | —
| //
syrface //
e
L1
\\\ |1 ///
empty ‘\\\ ///
S P
/ \\\ / |~
/ \\\ //
empty Tl |~
.. |~

Sparse Octree Brick

. Graphics Programming Conference, November 18-20, Breda

Managing the Brick Tree

Want to change nodes from both CPU and GPU

« E.g. changes from simulation, LOD changes from compute shader
« But staging / readback delays make data structure sync difficult

Solution:
« CPU: solely responsible for brick tree changes
* GPU: output LOD feedback buffers with versioned requests
« CPU: Ignore requests with node data version mismatches
« CPU: Apply remaining N items, sorted by priority

1. Node

Merges
Feedback
Buffers 2. Node Upload to LOD
Updates GPU Heuristic

Water

. i
Simulation 3. Node

Subdivisions

) Graphics Programming Conference, November 18-20, Breda

Managing the Brick Tree

Data requests from Simulation take time

= handled async (task threading)
= Brick Tree operations can take 2 update cycles
— State machine in each node:

WaterBrickTreeNodeState - : -vint8

Unallocated = Ou,
Loaded,

Updating,
Subdividing,
ChildrenLoaded,
Merging,
ParentMerging,
Count,

) Graphics Programming Conference, November 18-20, Breda

Growing a Brick Forest

Problem:
« Simulation API only provides 5 LOD levels max (chunks are 16x16 columns)
 Single big brick tree hierarchy too deep for fast spatial GPU lookups & tracing rays

Solution: Truncate the hierarchy at the top by 7 levels
* Forest of 107x30x107 smaller brick trees, each covers 963m?
« Each root node pre-allocated, stored dense at the beginning of a node pool

= Lookup for the correct tree for a world position is O(1)
= Only levels that could actually contain any data need to be traversed!

Node pool (~1.3M entries = ~20MB)

) Graphics Programming Conference, November 18-20, Breda

Liquifying the Bricks

Problem:
« Simulation state updates irregularly (whenever new network packets arrive)
« Different/lower frequency than output frame rate
* Quantized to only 16 fill states per voxel
= Each change is a big visual discontinuity (popping)

Solution:
 Bricks can either be static or interpolating

* Interpolation:
» Lerp 8bit SDF data towards a separate target state in the page table
» Temporally dither for sub-8bit perceived precision steps

« Subdividing nodes transitions instantly, popping no big problem -> far away
* New Problem: Only GPU knows which bricks finished interpolating
= Feedback buffer to free up page table entries on CPU

) Graphics Programming Conference, November 18-20, Breda

Rendering

i
¥ 5000 /64

2 Graphics Programming Conference, November 18-20, Breda st

Rendering

Visibility Culling

« Compute shader scans all leaf nodes. For each leaf AABB:
* Frustum culling
* Occlusion culling against depth pyramid of scene
* Visible? => Append brick index to buffer for drawing

eye eye

* Edge case: Bricks intersecting the camera near plane
» We support both over and under water pixels on screen at the same time
* One extra screen space draw if camera is close to or inside water

) Graphics Programming Conference, November 18-20, Breda

Rendering

Brick AABBs

i
"“- I 1
; : Y '
Ry) s B o
i r 4
™
ot
/
¢

Instanced indirect
draw of culled brick
AABB front faces

AABBs are
optimized to more
tightly wrap where
the surface is

2 Graphics Programming Conference, November 18-20, Breda 025

Surface Rendering: Sphere Tracing

brick with SDF grid

eye eo.___

For each brick pixel:
SDF sphere trace
through the brick

(SDF range == max step size)

) Graphics Programming Conference, November 18-20, Breda

Rendering

Surface Rendering: Screen Space Pass

near

Similar to brick AABBs pass

Start points either within one or more bricks (or none) eye
Which ones? => Per pixel brick tree lookup at near plane
Calculate ray origin in brick, sphere trace from there

We now know:
« If pixel hit a surface

* If pixel is under water (from SDF sign)
» Surface depth (project hit position to screen)
« Surface normal (from SDF derivatives)

) Graphics Programming Conference, November 18-20, Breda

Surface Buffer

Small gbuffer with 32bit Depth & R10
containing: :
21bit octahedral encoded normal
8bit foam amount

1bit surface hit mask

1bit underwater mask

1bit particle mask (not shown)

Output in horizontal-half resolution [Grujic18], [Geffroy20]

) Graphics Programming Conference, November 18-20, Breda

Surface FX: Waves

* In-place effects on the water surface buffer via compute passes

» Waves:
* Close-up waves: Detail normal maps
* Far waves: Procedural FBM noise with 2-3 octaves -> no tiling issues
* No big FFT/Tessendorf wave simulation here (stay close to simulation output)

9 Graphics Programming Conference, November 18-20, Breda

Rendering

Surface FX: Ripples

« Examples: player/enemy movement, rain, projectile hits, water splash impacts
« Simple projected planar 2D simulation with just amplitude + vertical velocity
« 10242 pixels => limited range around player camera

* Inject shapes from GPU VFX particle shaders to displace the water surface

. Graphics Programming Conference, November 18-20, Breda 25

Surface FX: Flow Mapping

* No velocity data from simulation
—=Flow from SDF gradients and wind

Change scrolling material with increasing slope
« waves => slow flow => white water => waterfall

UVs: position projected onto plane from quantized direction angles/slopes
Tangent basis from UVs & view vector derivatives (QuadReadAcrossX/Y())
Bilinear interpolation between 4 neighbour UV mappings and materials

) Graphics Programming Conference, November 18-20, Breda

Rendering

Compositing

» Surface Buffer is single air -> water, or water -> air interface
» Flips order of compositing volumetrics and VFX against the interface

Back-to-front rendering after opaque deferred shading:

1. Behind water surface: Early volumetrics & VFX
2. Water surface: Refractions, reflections, foam material, depth-aware upsampling
3. In front of water surface: Late volumetrics & VFX

eye
% atmosphere & fag % at here & fog

)

) Graphics Programming Conference, November 18-20, Breda

Compositing: More Layers?

 Unbounded number of media transitions, refractions, reflections,...
= More than one layer is complex, even if OIT is used

« Attempted opaque second layer written to gbuffer, but didn’t look good enough
= May want to revisit

« Low resolution ray-march through all water layers
= Estimate for ratio of air vs water, used as layer thickness for volumetrics

) Graphics Programming Conference, November 18-20, Breda

Rendering

2 Graphics Programming Conference, November 18-20, Breda 025

Surface Shading: Refractions

» Screen space, lots of edge case handling, but fast and still looks acceptable
 Classic trick: Offset UVs with surface normal and ground distance
* Not physically based (would require even more tracing of rays outside screen)

o g F

b3

) Graphics Programming Conference, November 18-20, Breda

Rendering

Surface Shading: Reflections

« Second SSSR on water surface buffer (@horizontal half resolution)
 Fallback: Gl probe reflected radiance (low res, lower end settings)
 Fallback (new): World rays + sky cube (higher res, high end)

2 Graphics Programming Conference, November 18-20, Breda .’25

Surface Shading: Total Internal Reflections

« Based in reality
* Critical angle ~49°

(water < air)
« Refraction angle hits limit:

total rleflection

By Jfmelero (adapted by Gavin R Putland).

File:ReflexionTotal.svg — subsequently translated and retouched., CC BY-SA
3.0,

https://commons.wikimedia.org/w/index.php?curid=77502540

) Graphics Programming Conference, November 18-20, Breda

Surface Shading: Lighting & Foam

« “Foam amount”. blend value between water surface and foam PBR material
« Foam does simple wrapped lighting diffuse to emulate (sub-surface) scattering
« Foam amount together with Fresnel term controls surface opacity

) Graphics Programming Conference, November 18-20, Breda

Volumetrics

Many volumetric phenomena in-game:
Fog, Clouds, Weather, Atmosphere, and now Water.

For more details:
=> Philipp Krause’s talk on Volumetrics in Enshrouded

Main takeaways:
+ Water is a homogeneous medium in Enshrouded
« Water displaces any other inhomogeneous media (e.g. fog)
= “epipolar sampling”: optimization of volumetric ray march
= crisp god rays with less artefacts than usually! \o/

» Sun transmittance: Penetration depth from low resolution water shadow map cascades
* Impact on Gl is emulated: Estimate player depth by checking surrounding water columns (CPU)

) Graphics Programming Conference, November 18-20, Breda

Caustics

» Caustics are the result of refracting sun/moon light through water surface

= Brighter areas & darker areas
— Caustics result must average out to conserve energy

* Photon mapped caustics would still blow the budget
» Texture procedurally distorted 3x with small spectral separation

* Pre-rendered into a tile-able texture, used in:
» Deferred shading, applied to directional lighting under water
» Volumetrics (=> God-Rays)

) Graphics Programming Conference, November 18-20, Breda

Water VFEX

« Transparency sorting
» Clouds, atmosphere, fog, water surface, underwater volume, VEX |
» For water surface: Split visible VFX into “render before water” and “render after water”
* Intersecting VFX: rendered twice with per-pixel test against water surface depth

« Generate spawn points for GPU based VFX system
» Procedurally scatter points on waterfall columns and splashes underneath waterfalls
 Brick interpolation can output “wavefront” points for horizontally expanding water
= More info on our VFX system in Lukas Feller’s talk

 Track on GPU if skinned mesh bones were in water or in rain
= Marking them as wet modifies PBR material roughness etc.

) Graphics Programming Conference, November 18-20, Breda

Shorelines - “The Big Edge-Case”

|dea:

» Generate 2D coast distance data on flat water surfaces

« UVs from distance gradient & position

« Tangent basis from UVs & view vector derivatives

* Procedurally animate shoreline waves across the distance

But we have dynamic 3D water!?

) Graphics Programming Conference, November 18-20, Breda

Rendering

Shorelines - “The Big Edge-Case’

SN T —

Additional page table with

“Brick water surface data” (R8G8B8AS):
x direction towards coast

z direction towards coast

1.0f - distance to coast

max water depth in neighbourhood (0-3m)

To fill it:

* Find intersection voxels with water surface & terrain
= writeout (0,0, 1,0)

Initialize neighbour surface voxel directions
Trace water depth (0-3m) per surface voxel
Horizontal & vertical separable blurs/dilation
Attenuate “illegal” shoreline gradients Coast directions

I L

Water depth

) Graphics Programming Conference, November 18-20, Breda

Rendering: GPU Memory

Brick Tree:

Octree Node pool: 20MB 1.2M nodes
Brick SDF page table: 64MB 128k bricks
Shoreline page table: 32MB

Rendering (horizontal half-resolution@1440p):
Surface (depth, normals, foam, masks): 15MB + 15MB history

Staging & Temp buffers, FX Textures, Caustics, Ripples,
Motion vectors, SSSR, Epipolar, Composition, VFX sorting... it's complicated

) Graphics Programming Conference, November 18-20, Breda

Rendering: GPU Performance

RTX 4060 Ti, “Quality” Preset

Stress Test: Fast camera motion, \Water everywhere
Average: Average gameplay on/under water
Brick Tree: Stress Average
« Updates, Subdivisions, Merges: 200us 190us
» Shoreline updates: 125us 120us
* Culling, LODs: 125us 115us
Rendering@1440p:

» Surface Buffer: 220us 180us
 Waves & Surface FX: 230us 205us
» Reflections (SSSR + world rays) 1.0ms 0.87ms
» Volumetrics, Refraction, Composition, ...: 0.7ms 0.64ms

) Graphics Programming Conference, November 18-20, Breda

Rendering

_ —— e .o poW e o BaAS

F 3
2 Graphics Programming Conference, November 18-20, Breda 02 5

References

References

» [Guehl13] GigaVoxels, Real-time Voxel-based Library to Render Large and...

» [Grujic18] Water Rendering in FarCry 5

 [Kirkpatrick19] Advancements in Water and Procedural Technology

» [Geffroy20] Rendering the Hellscape of Doom Eternal

» [Mao23] Open-World Water Rendering and Real-Time Simulation

» [Lague25] Coding Adventure: Rendering Fluids

) Graphics Programming Conference, November 18-20, Breda

https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://www.youtube.com/watch?v=4oDtGnQNCx4
https://www.youtube.com/watch?v=4oDtGnQNCx4
https://www.youtube.com/watch?v=4oDtGnQNCx4
https://www.youtube.com/watch?v=9qIgA2H90o0
https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.youtube.com/watch?v=kOkfC5fLfgE

Bonus: Problems / Future work

« Geometry
» LOD differences to terrain/building Voxels

» Geometric differences
» Terrain displacement maps
» Blocking props (doors etc.) thinner than a voxel, placed freely

* Voxel & column differences
« filllamount vs fill-height: edge AA, hole filling, overfilling

« Water surface
» Tessellation
« Layers
* Near plane water line
« we’re clipping at ~5cm due to sphere tracing precision

* VEX

» Procedurally generate waterfalls?
» Terrain & building wetness

« Performance & memory optimizations, as always ©

) Graphics Programming Conference, November 18-20, Breda

	Folie 1
	Folie 2: What is Enshrouded?
	Folie 3: What is Enshrouded?
	Folie 4
	Folie 5: Why Water?
	Folie 6: Requirements
	Folie 7: State of the Art
	Folie 8
	Folie 9: Simulation – Columns
	Folie 10: Simulation – Columns
	Folie 11: Simulation - Columns
	Folie 12
	Folie 13: Simulation – Chunks
	Folie 14
	Folie 15
	Folie 16: Rendering Water
	Folie 17: From Columns to Voxels
	Folie 18: Data Considerations
	Folie 19: The Brick Tree
	Folie 20: Managing the Brick Tree
	Folie 21: Managing the Brick Tree
	Folie 22: Growing a Brick Forest
	Folie 23: Liquifying the Bricks
	Folie 24: Liquifying the Bricks
	Folie 25: Visibility Culling
	Folie 26: Surface Rendering: Brick AABBs
	Folie 27: Surface Rendering: Sphere Tracing
	Folie 28: Surface Rendering: Screen Space Pass
	Folie 29: Surface Buffer
	Folie 30: Surface FX: Waves
	Folie 31: Surface FX: Ripples
	Folie 32: Surface FX: Flow Mapping
	Folie 33: Compositing
	Folie 34: Compositing: More Layers?
	Folie 35: Find the Water
	Folie 36: Surface Shading: Refractions
	Folie 37: Surface Shading: Reflections
	Folie 38: Surface Shading: Total Internal Reflections
	Folie 39: Surface Shading: Lighting & Foam
	Folie 40: Volumetrics
	Folie 41: Caustics
	Folie 42: Water VFX
	Folie 43: Shorelines - “The Big Edge-Case”
	Folie 44: Shorelines - “The Big Edge-Case”
	Folie 45: Rendering: GPU Memory
	Folie 46: Rendering: GPU Performance
	Folie 47: Rendering: The Bricked Tree
	Folie 48
	Folie 49: Bonus: Problems / Future work

