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Why Water?
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Requirements 

• Dynamic / Simulated

• Work with dynamic 3D voxel based world

• Gameplay interactions: Players, NPCs, Enemies, Fire, …

• Believable and Predictable Movement

• Soft Real-Time

• Fixed memory budget

• Multiplayer (authoritative server, replication)

Introduction



State of the Art

• Most games have static 2D planar water surfaces
• Even close relatives: Teardown, Valheim, …

• Simulated water is usually limited
• Hydrophobia, From Dust, 7 Days to Die: 2.5D simulation

• Minecraft: Voxels expand by limited distance

• Academic Research usually too fine-grained/cost intensive and 
not client-server ready
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Simulation – Columns

Simulation

• Bottom & Height

• Fluid section

• Displacement section
• Terrain/buildings/blocker



Simulation – Columns

Simulation

• Bottom & Height

• Fluid sections

• Displacement sections
• Terrain/buildings

• Stackable!



Simulation - Columns





Simulation – Chunks

Simulation





• TODO: Editor debug view of simulated & replicated chunks
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Rendering Water 

• Focus here is GPU Representation and Surface Phenomena

• For (water) volumetrics please check out Philipp Krause’s talk:
• “The Fog is Lifting, Volumetric Rendering in Enshrouded”

• For more (water?) VFX tech insights there’s Lukas Feller’s talk:
• “Lessons learned from shipping a GPU Particle System”
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From Columns to Voxels

• System dependency: Renderer -> Water Simulation Client

• Everything voxelized here

• Fetch queued “dirty boxes” each frame to trigger updates

• Dirty boxes are 3D voxel bounding boxes

• Simple interface:
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Data Considerations

Observations:
• Way too many 0.5³m³ voxels in a 10k x 10k x 4k world
• Most voxels are either completely empty or completely filled with water
Voxels containing a water surface are most interesting

• Voxels are blocky, but we want a smooth representation

Idea:
• Convert voxels to SDF grid only close to water surfaces
• Store SDF in a sparse GPU-friendly data structure
• Partition sparse space into either full or empty
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The Brick Tree
• Sparse octree, nodes with water surfaces are subdivided to desired LOD

• Empty and full octree nodes do not get subdivided

• Leaf nodes are “Bricks”

• Brick: 6x6x6 8bit SDF values with interpolation border (so 8x8x8 = 512bytes)

• Octree nodes are allocated from a node pool buffer, synced between CPU & GPU

• Bricks are stored separate, in a 3D texture (atlas/virtual texture/page table)
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Managing the Brick Tree
Want to change nodes from both CPU and GPU

• E.g. changes from simulation, LOD changes from compute shader
• But staging / readback delays make data structure sync difficult

Solution:
• CPU: solely responsible for brick tree changes
• GPU: output LOD feedback buffers with versioned requests
• CPU: Ignore requests with node data version mismatches
• CPU: Apply remaining N items, sorted by priority
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Managing the Brick Tree
Data requests from Simulation take time

 handled async (task threading)

 Brick Tree operations can take 2 update cycles

 State machine in each node:
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Growing a Brick Forest
Problem:

• Simulation API only provides 5 LOD levels max (chunks are 16x16 columns)

• Single big brick tree hierarchy too deep for fast spatial GPU lookups & tracing rays

Solution: Truncate the hierarchy at the top by 7 levels

• Forest of 107x30x107 smaller brick trees, each covers 96³m³

• Each root node pre-allocated, stored dense at the beginning of a node pool

 Lookup for the correct tree for a world position is O(1)

 Only levels that could actually contain any data need to be traversed!
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Liquifying the Bricks
Problem:

• Simulation state updates irregularly (whenever new network packets arrive)

• Different/lower frequency than output frame rate

• Quantized to only 16 fill states per voxel

 Each change is a big visual discontinuity (popping)

Solution:
• Bricks can either be static or interpolating

• Interpolation:
• Lerp 8bit SDF data towards a separate target state in the page table

• Temporally dither for sub-8bit perceived precision steps

• Subdividing nodes transitions instantly, popping no big problem -> far away

• New Problem: Only GPU knows which bricks finished interpolating

 Feedback buffer to free up page table entries on CPU
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Liquifying the Bricks
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Visibility Culling
• Compute shader scans all leaf nodes. For each leaf AABB:

• Frustum culling

• Occlusion culling against depth pyramid of scene

• Visible? => Append brick index to buffer for drawing

• Edge case: Bricks intersecting the camera near plane
• We support both over and under water pixels on screen at the same time

• One extra screen space draw if camera is close to or inside water

Rendering
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Surface Rendering: Brick AABBs

Instanced indirect 
draw of culled brick 
AABB front faces

AABBs are 
optimized to more 
tightly wrap where 
the surface is
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Surface Rendering: Sphere Tracing

For each brick pixel:

SDF sphere trace

through the brick

(SDF range == max step size)

Rendering

eye
brick with SDF grid



Surface Rendering: Screen Space Pass

• Similar to brick AABBs pass

• Start points either within one or more bricks (or none)

• Which ones? => Per pixel brick tree lookup at near plane

• Calculate ray origin in brick, sphere trace from there

• We now know:
• If pixel hit a surface
• If pixel is under water (from SDF sign)
• Surface depth (project hit position to screen)
• Surface normal (from SDF derivatives)

Rendering
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Surface Buffer

Small gbuffer with 32bit Depth & R10G10B10A2 Surface render target 
containing:

• 21bit octahedral encoded normal
• 8bit foam amount
• 1bit surface hit mask
• 1bit underwater mask
• 1bit particle mask (not shown)

Output in horizontal-half resolution [Grujic18], [Geffroy20]
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Surface FX: Waves

• In-place effects on the water surface buffer via compute passes

• Waves:
• Close-up waves: Detail normal maps
• Far waves: Procedural FBM noise with 2-3 octaves -> no tiling issues
• No big FFT/Tessendorf wave simulation here (stay close to simulation output)
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Surface FX: Ripples
• Examples: player/enemy movement, rain, projectile hits, water splash impacts

• Simple projected planar 2D simulation with just amplitude + vertical velocity

• 1024² pixels => limited range around player camera

• Inject shapes from GPU VFX particle shaders to displace the water surface
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Surface FX: Flow Mapping
• No velocity data from simulation 

Flow from SDF gradients and wind

• Change scrolling material with increasing slope
• waves => slow flow => white water => waterfall

• UVs: position projected onto plane from quantized direction angles/slopes

• Tangent basis from UVs & view vector derivatives (QuadReadAcrossX/Y())

• Bilinear interpolation between 4 neighbour UV mappings and materials
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Compositing

• Surface Buffer is single air -> water, or water -> air interface

• Flips order of compositing volumetrics and VFX against the interface

Back-to-front rendering after opaque deferred shading:
1. Behind water surface: Early volumetrics & VFX
2. Water surface: Refractions, reflections, foam material, depth-aware upsampling
3. In front of water surface: Late volumetrics & VFX

Rendering
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Compositing: More Layers?

• Unbounded number of media transitions, refractions, reflections,…

 More than one layer is complex, even if OIT is used

• Attempted opaque second layer written to gbuffer, but didn’t look good enough

 May want to revisit

• Low resolution ray-march through all water layers

 Estimate for ratio of air vs water, used as layer thickness for volumetrics
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Find the Water
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Surface Shading: Refractions
• Screen space, lots of edge case handling, but fast and still looks acceptable
• Classic trick: Offset UVs with surface normal and ground distance
• Not physically based (would require even more tracing of rays outside screen)
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Surface Shading: Reflections
• Second SSSR on water surface buffer (@horizontal half resolution)

• Fallback: GI probe reflected radiance (low res, lower end settings)

• Fallback (new): World rays + sky cube (higher res, high end)
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Surface Shading: Total Internal Reflections

• Based in reality

• Critical angle ~49°
(water  air)

• Refraction angle hits limit:

Rendering

By Jfmelero (adapted by Gavin R Putland).

File:ReflexionTotal.svg — subsequently translated and retouched., CC BY-SA 

3.0,

https://commons.wikimedia.org/w/index.php?curid=77502540



Surface Shading: Lighting & Foam
• “Foam amount”: blend value between water surface and foam PBR material

• Foam does simple wrapped lighting diffuse to emulate (sub-surface) scattering

• Foam amount together with Fresnel term controls surface opacity
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Volumetrics

Many volumetric phenomena in-game:

Fog, Clouds, Weather, Atmosphere, and now Water.

For more details:

=> Philipp Krause’s talk on Volumetrics in Enshrouded

Main takeaways:
• Water is a homogeneous medium in Enshrouded

• Water displaces any other inhomogeneous media (e.g. fog)
 “epipolar sampling”: optimization of volumetric ray march

 crisp god rays with less artefacts than usually! \o/

• Sun transmittance: Penetration depth from low resolution water shadow map cascades

• Impact on GI is emulated: Estimate player depth by checking surrounding water columns (CPU)
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Caustics
• Caustics are the result of refracting sun/moon light through water surface

Brighter areas & darker areas
Caustics result must average out to conserve energy

• Photon mapped caustics would still blow the budget

• Texture procedurally distorted 3x with small spectral separation

• Pre-rendered into a tile-able texture, used in:
• Deferred shading, applied to directional lighting under water
• Volumetrics (=> God-Rays)
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Water VFX

• Transparency sorting
• Clouds, atmosphere, fog, water surface, underwater volume, VFX
• For water surface: Split visible VFX into “render before water” and “render after water”
• Intersecting VFX: rendered twice with per-pixel test against water surface depth

• Generate spawn points for GPU based VFX system
• Procedurally scatter points on waterfall columns and splashes underneath waterfalls
• Brick interpolation can output “wavefront” points for horizontally expanding water
 More info on our VFX system in Lukas Feller’s talk

• Track on GPU if skinned mesh bones were in water or in rain

 Marking them as wet modifies PBR material roughness etc.
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Shorelines - “The Big Edge-Case”

Idea:

• Generate 2D coast distance data on flat water surfaces

• UVs from distance gradient & position

• Tangent basis from UVs & view vector derivatives

• Procedurally animate shoreline waves across the distance

But we have dynamic 3D water!?

Rendering



Shorelines - “The Big Edge-Case”
Additional page table with

“Brick water surface data” (R8G8B8A8):

• x direction towards coast

• z direction towards coast

• 1.0f - distance to coast

• max water depth in neighbourhood (0-3m)

To fill it:

• Find intersection voxels with water surface & terrain
 write out ( 0, 0, 1, 0 )

• Initialize neighbour surface voxel directions

• Trace water depth (0-3m) per surface voxel

• Horizontal & vertical separable blurs/dilation

• Attenuate “illegal” shoreline gradients

Rendering
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Rendering: GPU Memory

Brick Tree:

Octree Node pool: 20MB 1.2M nodes

Brick SDF page table: 64MB 128k bricks

Shoreline page table: 32MB

Rendering (horizontal half-resolution@1440p):

Surface (depth, normals, foam, masks): 15MB + 15MB history

Staging & Temp buffers, FX Textures, Caustics, Ripples,

Motion vectors, SSSR, Epipolar, Composition, VFX sorting... it’s complicated
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Rendering: GPU Performance
RTX 4060 Ti, “Quality” Preset

Stress Test: Fast camera motion, Water everywhere

Average: Average gameplay on/under water

Brick Tree: Stress Average

• Updates, Subdivisions, Merges: 200us 190us

• Shoreline updates: 125us 120us

• Culling, LODs: 125us 115us

Rendering@1440p:

• Surface Buffer: 220us 180us

• Waves & Surface FX: 230us 205us

• Reflections (SSSR + world rays) 1.0ms 0.87ms

• Volumetrics, Refraction, Composition, …: 0.7ms 0.64ms
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Rendering: The Bricked Tree
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Bonus: Problems / Future work
• Geometry

• LOD differences to terrain/building Voxels
• Geometric differences

• Terrain displacement maps
• Blocking props (doors etc.) thinner than a voxel, placed freely

• Voxel  column differences
• fill-amount vs fill-height: edge AA, hole filling, overfilling

• Water surface
• Tessellation
• Layers
• Near plane water line

• we’re clipping at ~5cm due to sphere tracing precision

• VFX
• Procedurally generate waterfalls?
• Terrain & building wetness

• Performance & memory optimizations, as always ☺

Rendering
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