
Simon René Stempfle

Junior Programmer

@ Keen Games since 2023

Introduction

Andreas Mantler

Senior Graphics Programmer

@ Keen Games since 2024

What is Enshrouded?

Introduction

What is Enshrouded?

Introduction

Introduction

Why Water?

 Introduction

Requirements

• Dynamic / Simulated

• Work with dynamic 3D voxel based world

• Gameplay interactions: Players, NPCs, Enemies, Fire, …

• Believable and Predictable Movement

• Soft Real-Time

• Fixed memory budget

• Multiplayer (authoritative server, replication)

Introduction

State of the Art

• Most games have static 2D planar water surfaces
• Even close relatives: Teardown, Valheim, …

• Simulated water is usually limited
• Hydrophobia, From Dust, 7 Days to Die: 2.5D simulation

• Minecraft: Voxels expand by limited distance

• Academic Research usually too fine-grained/cost intensive and
not client-server ready

Introduction

Introduction

Simulation – Columns

Simulation

• Bottom & Height

• Fluid section

• Displacement section
• Terrain/buildings/blocker

Simulation – Columns

Simulation

• Bottom & Height

• Fluid sections

• Displacement sections
• Terrain/buildings

• Stackable!

Simulation - Columns

Simulation – Chunks

Simulation

• TODO: Editor debug view of simulated & replicated chunks

Simulation

Rendering Water

• Focus here is GPU Representation and Surface Phenomena

• For (water) volumetrics please check out Philipp Krause’s talk:
• “The Fog is Lifting, Volumetric Rendering in Enshrouded”

• For more (water?) VFX tech insights there’s Lukas Feller’s talk:
• “Lessons learned from shipping a GPU Particle System”

Rendering

From Columns to Voxels

• System dependency: Renderer -> Water Simulation Client

• Everything voxelized here

• Fetch queued “dirty boxes” each frame to trigger updates

• Dirty boxes are 3D voxel bounding boxes

• Simple interface:

Rendering

Data Considerations

Observations:
• Way too many 0.5³m³ voxels in a 10k x 10k x 4k world
• Most voxels are either completely empty or completely filled with water
Voxels containing a water surface are most interesting

• Voxels are blocky, but we want a smooth representation

Idea:
• Convert voxels to SDF grid only close to water surfaces
• Store SDF in a sparse GPU-friendly data structure
• Partition sparse space into either full or empty

Rendering

The Brick Tree
• Sparse octree, nodes with water surfaces are subdivided to desired LOD

• Empty and full octree nodes do not get subdivided

• Leaf nodes are “Bricks”

• Brick: 6x6x6 8bit SDF values with interpolation border (so 8x8x8 = 512bytes)

• Octree nodes are allocated from a node pool buffer, synced between CPU & GPU

• Bricks are stored separate, in a 3D texture (atlas/virtual texture/page table)

Rendering

Brick

empty

full

empty

empty

empty

surface

surface

surface surface

surface

Sparse Octree

Managing the Brick Tree
Want to change nodes from both CPU and GPU

• E.g. changes from simulation, LOD changes from compute shader
• But staging / readback delays make data structure sync difficult

Solution:
• CPU: solely responsible for brick tree changes
• GPU: output LOD feedback buffers with versioned requests
• CPU: Ignore requests with node data version mismatches
• CPU: Apply remaining N items, sorted by priority

Rendering

3. Node

Subdivisions

Water

Simulation

1. Node

Merges

2. Node

Updates

Upload to

GPU

LOD

Heuristic
Render…

Feedback

Buffers

Managing the Brick Tree
Data requests from Simulation take time

 handled async (task threading)

 Brick Tree operations can take 2 update cycles

 State machine in each node:

Rendering

Growing a Brick Forest
Problem:

• Simulation API only provides 5 LOD levels max (chunks are 16x16 columns)

• Single big brick tree hierarchy too deep for fast spatial GPU lookups & tracing rays

Solution: Truncate the hierarchy at the top by 7 levels

• Forest of 107x30x107 smaller brick trees, each covers 96³m³

• Each root node pre-allocated, stored dense at the beginning of a node pool

 Lookup for the correct tree for a world position is O(1)

 Only levels that could actually contain any data need to be traversed!

Rendering

root 0 … root 42 … root N parent free leaf leaf parent …

Node pool (~1.3M entries = ~20MB)

Liquifying the Bricks
Problem:

• Simulation state updates irregularly (whenever new network packets arrive)

• Different/lower frequency than output frame rate

• Quantized to only 16 fill states per voxel

 Each change is a big visual discontinuity (popping)

Solution:
• Bricks can either be static or interpolating

• Interpolation:
• Lerp 8bit SDF data towards a separate target state in the page table

• Temporally dither for sub-8bit perceived precision steps

• Subdividing nodes transitions instantly, popping no big problem -> far away

• New Problem: Only GPU knows which bricks finished interpolating

 Feedback buffer to free up page table entries on CPU

Rendering

Liquifying the Bricks

Rendering

Visibility Culling
• Compute shader scans all leaf nodes. For each leaf AABB:

• Frustum culling

• Occlusion culling against depth pyramid of scene

• Visible? => Append brick index to buffer for drawing

• Edge case: Bricks intersecting the camera near plane
• We support both over and under water pixels on screen at the same time

• One extra screen space draw if camera is close to or inside water

Rendering

eye

near

eye

near

far

Surface Rendering: Brick AABBs

Instanced indirect
draw of culled brick
AABB front faces

AABBs are
optimized to more
tightly wrap where
the surface is

Rendering

Surface Rendering: Sphere Tracing

For each brick pixel:

SDF sphere trace

through the brick

(SDF range == max step size)

Rendering

eye
brick with SDF grid

Surface Rendering: Screen Space Pass

• Similar to brick AABBs pass

• Start points either within one or more bricks (or none)

• Which ones? => Per pixel brick tree lookup at near plane

• Calculate ray origin in brick, sphere trace from there

• We now know:
• If pixel hit a surface
• If pixel is under water (from SDF sign)
• Surface depth (project hit position to screen)
• Surface normal (from SDF derivatives)

Rendering

eye

near

Surface Buffer

Small gbuffer with 32bit Depth & R10G10B10A2 Surface render target
containing:

• 21bit octahedral encoded normal
• 8bit foam amount
• 1bit surface hit mask
• 1bit underwater mask
• 1bit particle mask (not shown)

Output in horizontal-half resolution [Grujic18], [Geffroy20]

Rendering

Surface FX: Waves

• In-place effects on the water surface buffer via compute passes

• Waves:
• Close-up waves: Detail normal maps
• Far waves: Procedural FBM noise with 2-3 octaves -> no tiling issues
• No big FFT/Tessendorf wave simulation here (stay close to simulation output)

Rendering

Surface FX: Ripples
• Examples: player/enemy movement, rain, projectile hits, water splash impacts

• Simple projected planar 2D simulation with just amplitude + vertical velocity

• 1024² pixels => limited range around player camera

• Inject shapes from GPU VFX particle shaders to displace the water surface

Rendering

Surface FX: Flow Mapping
• No velocity data from simulation

Flow from SDF gradients and wind

• Change scrolling material with increasing slope
• waves => slow flow => white water => waterfall

• UVs: position projected onto plane from quantized direction angles/slopes

• Tangent basis from UVs & view vector derivatives (QuadReadAcrossX/Y())

• Bilinear interpolation between 4 neighbour UV mappings and materials

Rendering

Compositing

• Surface Buffer is single air -> water, or water -> air interface

• Flips order of compositing volumetrics and VFX against the interface

Back-to-front rendering after opaque deferred shading:
1. Behind water surface: Early volumetrics & VFX
2. Water surface: Refractions, reflections, foam material, depth-aware upsampling
3. In front of water surface: Late volumetrics & VFX

Rendering

VFX

VFX

eye

water

atmosphere & fog

eye
water

atmosphere & fog

VFX

VFX

Compositing: More Layers?

• Unbounded number of media transitions, refractions, reflections,…

 More than one layer is complex, even if OIT is used

• Attempted opaque second layer written to gbuffer, but didn’t look good enough

 May want to revisit

• Low resolution ray-march through all water layers

 Estimate for ratio of air vs water, used as layer thickness for volumetrics

Rendering

Find the Water

Rendering

Surface Shading: Refractions
• Screen space, lots of edge case handling, but fast and still looks acceptable
• Classic trick: Offset UVs with surface normal and ground distance
• Not physically based (would require even more tracing of rays outside screen)

Rendering

Surface Shading: Reflections
• Second SSSR on water surface buffer (@horizontal half resolution)

• Fallback: GI probe reflected radiance (low res, lower end settings)

• Fallback (new): World rays + sky cube (higher res, high end)

Rendering

Surface Shading: Total Internal Reflections

• Based in reality

• Critical angle ~49°
(water  air)

• Refraction angle hits limit:

Rendering

By Jfmelero (adapted by Gavin R Putland).

File:ReflexionTotal.svg — subsequently translated and retouched., CC BY-SA

3.0,

https://commons.wikimedia.org/w/index.php?curid=77502540

Surface Shading: Lighting & Foam
• “Foam amount”: blend value between water surface and foam PBR material

• Foam does simple wrapped lighting diffuse to emulate (sub-surface) scattering

• Foam amount together with Fresnel term controls surface opacity

Rendering

Volumetrics

Many volumetric phenomena in-game:

Fog, Clouds, Weather, Atmosphere, and now Water.

For more details:

=> Philipp Krause’s talk on Volumetrics in Enshrouded

Main takeaways:
• Water is a homogeneous medium in Enshrouded

• Water displaces any other inhomogeneous media (e.g. fog)
 “epipolar sampling”: optimization of volumetric ray march

 crisp god rays with less artefacts than usually! \o/

• Sun transmittance: Penetration depth from low resolution water shadow map cascades

• Impact on GI is emulated: Estimate player depth by checking surrounding water columns (CPU)

Rendering

Caustics
• Caustics are the result of refracting sun/moon light through water surface

Brighter areas & darker areas
Caustics result must average out to conserve energy

• Photon mapped caustics would still blow the budget

• Texture procedurally distorted 3x with small spectral separation

• Pre-rendered into a tile-able texture, used in:
• Deferred shading, applied to directional lighting under water
• Volumetrics (=> God-Rays)

Rendering

Water VFX

• Transparency sorting
• Clouds, atmosphere, fog, water surface, underwater volume, VFX
• For water surface: Split visible VFX into “render before water” and “render after water”
• Intersecting VFX: rendered twice with per-pixel test against water surface depth

• Generate spawn points for GPU based VFX system
• Procedurally scatter points on waterfall columns and splashes underneath waterfalls
• Brick interpolation can output “wavefront” points for horizontally expanding water
 More info on our VFX system in Lukas Feller’s talk

• Track on GPU if skinned mesh bones were in water or in rain

 Marking them as wet modifies PBR material roughness etc.

Rendering

Shorelines - “The Big Edge-Case”

Idea:

• Generate 2D coast distance data on flat water surfaces

• UVs from distance gradient & position

• Tangent basis from UVs & view vector derivatives

• Procedurally animate shoreline waves across the distance

But we have dynamic 3D water!?

Rendering

Shorelines - “The Big Edge-Case”
Additional page table with

“Brick water surface data” (R8G8B8A8):

• x direction towards coast

• z direction towards coast

• 1.0f - distance to coast

• max water depth in neighbourhood (0-3m)

To fill it:

• Find intersection voxels with water surface & terrain
 write out (0, 0, 1, 0)

• Initialize neighbour surface voxel directions

• Trace water depth (0-3m) per surface voxel

• Horizontal & vertical separable blurs/dilation

• Attenuate “illegal” shoreline gradients

Rendering

Water depthCoast directions

Coast intersectionsExample input

Rendering: GPU Memory

Brick Tree:

Octree Node pool: 20MB 1.2M nodes

Brick SDF page table: 64MB 128k bricks

Shoreline page table: 32MB

Rendering (horizontal half-resolution@1440p):

Surface (depth, normals, foam, masks): 15MB + 15MB history

Staging & Temp buffers, FX Textures, Caustics, Ripples,

Motion vectors, SSSR, Epipolar, Composition, VFX sorting... it’s complicated

Rendering

Rendering: GPU Performance
RTX 4060 Ti, “Quality” Preset

Stress Test: Fast camera motion, Water everywhere

Average: Average gameplay on/under water

Brick Tree: Stress Average

• Updates, Subdivisions, Merges: 200us 190us

• Shoreline updates: 125us 120us

• Culling, LODs: 125us 115us

Rendering@1440p:

• Surface Buffer: 220us 180us

• Waves & Surface FX: 230us 205us

• Reflections (SSSR + world rays) 1.0ms 0.87ms

• Volumetrics, Refraction, Composition, …: 0.7ms 0.64ms

Rendering

Rendering: The Bricked Tree

Rendering

References

• [Guehl13] GigaVoxels, Real-time Voxel-based Library to Render Large and…

• [Grujic18] Water Rendering in FarCry 5

• [Kirkpatrick19] Advancements in Water and Procedural Technology

• [Geffroy20] Rendering the Hellscape of Doom Eternal

• [Mao23] Open-World Water Rendering and Real-Time Simulation

• [Lague25] Coding Adventure: Rendering Fluids

 References

https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://gigavoxels.inria.fr/publications.html
https://www.youtube.com/watch?v=4oDtGnQNCx4
https://www.youtube.com/watch?v=4oDtGnQNCx4
https://www.youtube.com/watch?v=4oDtGnQNCx4
https://www.youtube.com/watch?v=9qIgA2H90o0
https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.gdcvault.com/play/1028829/Advanced-Graphics-Summit-Open-World
https://www.youtube.com/watch?v=kOkfC5fLfgE

Bonus: Problems / Future work
• Geometry

• LOD differences to terrain/building Voxels
• Geometric differences

• Terrain displacement maps
• Blocking props (doors etc.) thinner than a voxel, placed freely

• Voxel  column differences
• fill-amount vs fill-height: edge AA, hole filling, overfilling

• Water surface
• Tessellation
• Layers
• Near plane water line

• we’re clipping at ~5cm due to sphere tracing precision

• VFX
• Procedurally generate waterfalls?
• Terrain & building wetness

• Performance & memory optimizations, as always ☺

Rendering

	Folie 1
	Folie 2: What is Enshrouded?
	Folie 3: What is Enshrouded?
	Folie 4
	Folie 5: Why Water?
	Folie 6: Requirements
	Folie 7: State of the Art
	Folie 8
	Folie 9: Simulation – Columns
	Folie 10: Simulation – Columns
	Folie 11: Simulation - Columns
	Folie 12
	Folie 13: Simulation – Chunks
	Folie 14
	Folie 15
	Folie 16: Rendering Water
	Folie 17: From Columns to Voxels
	Folie 18: Data Considerations
	Folie 19: The Brick Tree
	Folie 20: Managing the Brick Tree
	Folie 21: Managing the Brick Tree
	Folie 22: Growing a Brick Forest
	Folie 23: Liquifying the Bricks
	Folie 24: Liquifying the Bricks
	Folie 25: Visibility Culling
	Folie 26: Surface Rendering: Brick AABBs
	Folie 27: Surface Rendering: Sphere Tracing
	Folie 28: Surface Rendering: Screen Space Pass
	Folie 29: Surface Buffer
	Folie 30: Surface FX: Waves
	Folie 31: Surface FX: Ripples
	Folie 32: Surface FX: Flow Mapping
	Folie 33: Compositing
	Folie 34: Compositing: More Layers?
	Folie 35: Find the Water
	Folie 36: Surface Shading: Refractions
	Folie 37: Surface Shading: Reflections
	Folie 38: Surface Shading: Total Internal Reflections
	Folie 39: Surface Shading: Lighting & Foam
	Folie 40: Volumetrics
	Folie 41: Caustics
	Folie 42: Water VFX
	Folie 43: Shorelines - “The Big Edge-Case”
	Folie 44: Shorelines - “The Big Edge-Case”
	Folie 45: Rendering: GPU Memory
	Folie 46: Rendering: GPU Performance
	Folie 47: Rendering: The Bricked Tree
	Folie 48
	Folie 49: Bonus: Problems / Future work

